У меня есть эта проблема управления, где моя цель состоит в том, чтобы выбрать значения D
, чтобы Hb(t)
оставался в определенном диапазоне, см. Уравнения здесь (если это поможет, я пытаюсь воспроизведите симуляцию, обсуждаемую в этой статье ).
Я не уверен в своей попытке решить эту проблему, в частности, в терминах, где необходимы значения прошлого состояния E
и P
. Я пытался вычислить их вручную и передать в качестве аргументов моей интегрирующей функции. Но этот подход:
- имеет повторный код и его трудно понять
- неверно, я думаю, потому что, как и после решения, я получаю
Hb(t)
значений, которые я не ожидал бы даже после изменения многих значений параметров.
Есть ли лучший способ решить эти дифференциальные уравнения с состояниями, связанными со временем?
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def erythropoiesis_func(s, t, d, term1, term2, term3, term4):
"""
Inputs
d = drug dose (ug/kg per week)
term1 = avg of past Tp days
term2 = E_{tot}(t - (Tp + Tm))
term3 = P(t - (Tp + Tm))
term4 = sum of past Tj days times normal
"""
"""
States of model s(E,P,R):
E: exogenous plasma concentration of EPO
P: bone marrow concentration of progenitor cells and precursor cells
R: concentration of red blood cells (RDCs)
"""
E = s[0]
P = s[1]
R = s[2]
# Parameters to vary by each trajectory (patient) but constant for now
Ep = .36 #np.random.normal(.3588, .0753, 1)
Cr = .14 #np.random.normal(.1372, .0520, 1)
Cp = .21 #np.random.normal(.2014, .0640, 1)
# Constants:
Vd = 52.4 # Volume distribution
E50 = 100 / Vd # half-maximal effective concentration (drug potency)
Tp = 9 # P cell life in days
Tm = 4 # Delay from P compartment to R compartment in days
Tr = 70 # R cell life in days
Etot = (d / Vd) + Ep
Spmr = np.random.normal(Tr , 30, size=Tr).sum()
# Compute sdot:
dsdt = np.empty(len(s))
dsdt[0] = (24/25)*np.log(2)*Etot # E'(t)
dsdt[1] = Cp*(Etot/(E50 + Etot))*P - Cp*term1 # P'(t)
dsdt[2] = Cr*(term2/(E50 + term2))*term3 - (Cr/Spmr)*term4
return dsdt
# Initial Condition for the Control
d0 = .5
# Initial Conditions for the States (E, P, R)
s0 = np.array([(d0/52.4), 1., 1.])
# Constants
Tp = 9
Tm = 4
Tr = 70
E50 = 100 / 52.4
MCH = 2.4
# Time Interval (days)
tt = np.array(range(Tp+Tm+Tr))
# Pre fill vectors
E = np.ones(len(tt)) * s0[0]
P = np.ones(len(tt)) * s0[1]
R = np.ones(len(tt)) * s0[2]
H = MCH * R
d = np.random.uniform(low=0.0, high=1.0, size=len(tt))
# Simulate
term1_vals = []
term4_vals = []
for t in range(len(tt)-1):
# time to feed to solver
ts = [tt[t],tt[t+1]]
# generating term1
temp1 = []
for tj in range(Tp):
if tj <= t:
temp1.append( (E[t - tj] / (E50 + E[t - tj] )) * P[t - tj] )
term1_vals.append(np.mean(temp1))
# collecting term2 and term3 if they exist
if (Tp + Tm) <= t:
term2 = E[t-(Tp + Tm)]
term3 = P[t-(Tp + Tm)]
else:
term2 = 0
term3 = 0
# generating term4
temp4 = []
for tj in range((Tp+Tm),(Tp+Tm+Tr)):
if tj <= t:
temp4.append( np.random.normal(Tr , 30, size=1) * (E[t - tj] / (E50 + E[t - tj] )) * P[t - tj] )
term4_vals.append(np.sum(temp4))
# calling solver
s = odeint(erythropoiesis_func,s0,ts,args=(d[t+1],term1_vals[t],term2,term3,term4_vals[t]))
#storing values
E[t+1] = s[-1][0]
P[t+1] = s[-1][1]
R[t+1] = s[-1][2]
H[t+1] = MCH * s[-1][2]
s0 = s[-1]