Я пытаюсь воссоздать фрагмент кода с фрагментами, который я написал в программе tenorflow, но я пытаюсь найти правильные / лучшие операции с тензорным потоком.
Рассмотрим следующее решение с фрагментами:
import numpy as np
# Initialize a random numpy array:
my_dummy = np.random.random((6, 2, 2, 10))
print(my_dummy)
> [[[[0.6715164 0.58915908 0.36607568 0.73404715 0.69455375 0.52177771
0.91810873 0.85010461 0.37485212 0.35634401]
[0.55885052 0.13041019 0.89774818 0.3363019 0.66634638 0.32054576
0.46174629 0.59975141 0.02283781 0.02997967]]
....
]]]]
# Create random floats, based on channel 0 of my dummy:
random_floats = np.random.random(my_dummy.shape[0])
print(random_floats)
> [0.89351759 0.76734892 0.36810602 0.08513434 0.65511941 0.61297472]
# Create a mask with ones and a shape based on my_dummy:
my_mask = np.ones((my_dummy.shape[0], 1, 1, my_dummy.shape[-1]))
print(my_mask)
> [[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]]
# Initialize a rate parameter:
my_rate = 0.5
# Based on my_rate, change the array accordingly:
my_mask[my_rate > random_floats] = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
print(my_mask)
[[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]]
# Multiply my_dummy with the new mask:
np.multiply(my_dummy, my_mask)
array([[[[0.6715164 , 0.58915908, 0.36607568, 0.73404715, 0.69455375,
0.52177771, 0.91810873, 0.85010461, 0.37485212, 0.35634401],
[0.55885052, 0.13041019, 0.89774818, 0.3363019 , 0.66634638,
0.32054576, 0.46174629, 0.59975141, 0.02283781, 0.02997967]],
[[0.22358676, 0.74959561, 0.11109368, 0.56021714, 0.2767754 ,
0.55156506, 0.15488703, 0.25738564, 0.18588607, 0.57593545],
[0.15804289, 0.87858207, 0.12890992, 0.78828551, 0.52467083,
0.45117698, 0.2605117 , 0.46659721, 0.855278 , 0.29630581]]],
[[[0.381445 , 0. , 0.48308211, 0. , 0.5136352 ,
0. , 0.84428703, 0. , 0.20532641, 0. ],
[0.696645 , 0. , 0.84184568, 0. , 0.01369105,
0. , 0.27683334, 0. , 0.59356542, 0. ]],
[[0.5281193 , 0. , 0.82336821, 0. , 0.63435181,
0. , 0.12824084, 0. , 0.35045286, 0. ],
[0.02205884, 0. , 0.22927706, 0. , 0.45538199,
0. , 0.81220918, 0. , 0.46427429, 0. ]]],
.....
]]]])
В тензорном потоке я сделал это (предупреждение, много импортов, я много чего перепробовал и больше не уверен, нужны ли все они, просто хочу убедиться, что вы можете немедленно воспроизвести):
from keras.engine.base_layer import InputSpec
from tensorflow.python.util import deprecation
from tensorflow.python.framework import ops
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import tf_logging as logging
import numbers
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import math_ops
from keras import backend as K
# Create my_dummy and convert to tensor object:
my_dummy = np.random.random((6, 2, 2, 4))
my_dummy = ops.convert_to_tensor(my_dummy)
my_dummy.get_shape()
> TensorShape([Dimension(6), Dimension(2), Dimension(2), Dimension(4)])
# Create random floats, like before and inspect tensor with Keras (instead of running a tf session):
random_floats = random_ops.random_uniform([my_dummy.get_shape().as_list()[0]], dtype=my_dummy.dtype)
K.eval(random_floats)
> array([0.74018297, 0.76996447, 0.52047441, 0.28215968, 0.91457724,
0.64637448])
# Like before, create a mask with ones, like before shape (almost completely) based on my_dummy:
my_mask = tf.ones([my_dummy.get_shape()[0], 1, 1, my_dummy.get_shape()[-1]], dtype=x.dtype)
K.eval(my_mask)
> array([[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]]])
К сожалению, это где я застрял.Я не нашел способа изменить записи в объекте my_mask Tensor, основываясь на значении ставки.Одна вещь, которую я попробовал, была tf.where:
tf.where(rate > random_floats, my_mask, tf.constant([1, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype = my_dummy.dtype))
, но получаю ошибку:
ValueError: Shapes must be equal rank, but are 4 and 1 for 'Select_1' (op: 'Select') with input shapes: [6], [6,1,1,10], [10].
Благодарю за любой совет / помощь:)