import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
x_train = dataset[0:700,:-1]
y_train = dataset[0:700,-1]
x_test = dataset[700:,:-1]
y_test = dataset[700:,-1]
def create_model():
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=64)
skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=seed)
scores = cross_val_score(model, x_train, y_train, cv=skf)
predictions = cross_val_predict(model, x_test, y_test, cv=skf)
Я хочу тренировать [x_train], [y_train] с помощью StratifiedKFold и оценивать с помощью [x_test], [y_test], как я могу это сделать?Я попробовал cross_val_predict.но я думаю, что это не подходит.