Я использую Spark 2.1 и хочу записать список Person в качестве dataframe.Person класс имеет вложенный класс бинов Java Address
лицо:
public class Person {
private String name;
private Address address;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Address getAddress() {
return address;
}
public void setAddress(Address address) {
this.address = address;
}
}
Адрес:
public class Address {
private String city;
private String street;
public String getCity() {
return city;
}
public void setCity(String city) {
this.city = city;
}
public String getStreet() {
return street;
}
public void setStreet(String street) {
this.street = street;
}
}
Я использую следующий код для создания кадра данных для List [Person]
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import java.util.ArrayList;
import java.util.List;
public class PersonTest {
public static void main(String[] args) {
Person p = new Person();
p.setName("Tom");
Address address = new Address();
address.setCity("C");
address.setStreet("001");
p.setAddress(address);
List<Person> persons = new ArrayList<Person>();
persons.add(p);
SparkSession session = SparkSession.builder().master("local").appName("abc").enableHiveSupport().getOrCreate();
Dataset<Row> df = session.createDataFrame(persons, Person.class);
df.printSchema();
df.write().json("file:///D:/applog/spark/" + System.currentTimeMillis());
}
}
Но исключение происходит следующим образом, я бы спросил, как решить эту проблему.
Exception in thread "main" scala.MatchError: com.Address@1e5eb20a (of class com..Address)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:236)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:231)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:103)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$$anonfun$createToCatalystConverter$2.apply(CatalystTypeConverters.scala:383)
at org.apache.spark.sql.SQLContext$$anonfun$beansToRows$1$$anonfun$apply$1.apply(SQLContext.scala:1113)
at org.apache.spark.sql.SQLContext$$anonfun$beansToRows$1$$anonfun$apply$1.apply(SQLContext.scala:1113)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at org.apache.spark.sql.SQLContext$$anonfun$beansToRows$1.apply(SQLContext.scala:1113)
at org.apache.spark.sql.SQLContext$$anonfun$beansToRows$1.apply(SQLContext.scala:1111)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.toStream(Iterator.scala:1322)
at scala.collection.AbstractIterator.toStream(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toSeq(TraversableOnce.scala:298)
at scala.collection.AbstractIterator.toSeq(Iterator.scala:1336)
at org.apache.spark.sql.SparkSession.createDataFrame(SparkSession.scala:380)