Вы можете использовать aggregate
для объединения значений для каждого snpID
, а затем заменить значения в соответствии с вашими потребностями с помощью case_when
из dplyr
.
(out <- aggregate(.~ snpID, dat, toString))
# snpID Cal_X1 Cal_X2 Cal_X3 Cal_X4 Cal_X5 Cal_X6 Cal_X7 Cal_X8
#1 A_001 0, 0 1, 0 1, 1 1, 0 0, 1 0, 0 1, 1 0, 1
#2 A_002 1, 0 1, 1 0, 1 1, 0 1, 1 1, 0 0, 1 0, 1
#3 A_003 1, 1 0, 1 0, 0 1, 1 0, 1 1, 0 1, 0 0, 1
#4 A_004 0, 1 0, 0 1, 0 0, 1 0, 0 1, 1 0, 1 0, 0
Теперь перекодировать столбцы
library(dplyr)
out[-1] <- case_when(out[-1] == "0, 0" ~ NA_integer_,
out[-1] == "0, 1" ~ 0L,
out[-1] == "1, 0" ~ 1L,
TRUE ~ 2L)
Результат
out
# snpID Cal_X1 Cal_X2 Cal_X3 Cal_X4 Cal_X5 Cal_X6 Cal_X7 Cal_X8
#1 A_001 NA 1 2 1 0 NA 2 0
#2 A_002 1 2 0 1 2 1 0 0
#3 A_003 2 0 NA 2 0 1 1 0
#4 A_004 0 NA 1 0 NA 2 0 NA
данные
dat <- structure(list(snpID = c("A_001", "A_001", "A_002", "A_002",
"A_003", "A_003", "A_004", "A_004"), Cal_X1 = c(0L, 0L, 1L, 0L,
1L, 1L, 0L, 1L), Cal_X2 = c(1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L),
Cal_X3 = c(1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L), Cal_X4 = c(1L,
0L, 1L, 0L, 1L, 1L, 0L, 1L), Cal_X5 = c(0L, 1L, 1L, 1L, 0L,
1L, 0L, 0L), Cal_X6 = c(0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L),
Cal_X7 = c(1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L), Cal_X8 = c(0L,
1L, 0L, 1L, 0L, 1L, 0L, 0L)), .Names = c("snpID", "Cal_X1",
"Cal_X2", "Cal_X3", "Cal_X4", "Cal_X5", "Cal_X6", "Cal_X7", "Cal_X8"
), class = "data.frame", row.names = c(NA, -8L))