Я получил эту ошибку, когда запустил код «Проверка костей».
Ссылка на исходный код: https://github.com/foamliu/Keypoints
Ошибка:
Traceback (most recent call last):
File "train.py", line 95, in <module>
use_multiprocessing=False
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1418, in fit_generator
initial_epoch=initial_epoch)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training_generator.py", line 217, in fit_generator
class_weight=class_weight)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py", line 1217, in train_on_batch
outputs = self.train_function(ins)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2715, in __call__
return self._call(inputs)
File "C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py", line 2675, in _call
fetched = self._callable_fn(*array_vals)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1439, in __call__
run_metadata_ptr)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 528, in __exit__
c_api.TF_GetCode(self.status.status))
# tensorflow.python.framework.errors_impl.AbortedError: Operation received an exception:Status: 5, message: could not create a view primitive descriptor, in file tensorflow/core/kernels/mkl_slice_op.cc:435
[[{{nodetraining/Adam/gradients/concatenate_5/concat_grad/Slice_2}}]] #
new_model.fit_generator(train_gen(),
steps_per_epoch=num_train_samples // batch_size,
validation_data=valid_gen(),
validation_steps=num_valid_samples // batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks,
use_multiprocessing=False
)
def fit_generator(self, generator,
steps_per_epoch=None,
epochs=1,
verbose=1,
callbacks=None,
validation_data=None,
validation_steps=None,
class_weight=None,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
shuffle=True,
initial_epoch=0):
return training_generator.fit_generator(
self, generator,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
validation_data=validation_data,
validation_steps=validation_steps,
class_weight=class_weight,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
shuffle=shuffle,
initial_epoch=initial_epoch)