Я использую модель GAN для повышения качества изображения в 2 раза. Я хочу использовать Пиксельный транспонированный сверточный слой, найденный в https://github.com/HongyangGao/PixelTCN.
Я пытался использовать keras Lambda для создания пользовательского слоя, но получаю следующую ошибку:
tenorflow.python.framework.errors_impl.FailedPreconditionError: Попытка использовать неинициализированное значение 1 / conv2 / weights
[[{{node 1 / conv2 / weights / read}}]]
[[{{активация узла / Tanh}}]]
Вот лямбда-слой
def pixel_dcl(inputs, out_num, kernel_size, scope, scale, activation_fn=tf.nn.leaky_relu, d_format='NHWC'):
def pixel_shape(inputs):
dims = [inputs[0],inputs[1] * scale,inputs[2] * scale,int(inputs[3] / (scale ** 2))]
output_shape = tuple(dims)
return output_shape
def conv2d(inputs, out_num, kernel_size, scope, stride=1, d_format='NHWC'):
outputs = tf.contrib.layers.conv2d(inputs, out_num, kernel_size, scope=scope, stride=stride, data_format=d_format, activation_fn=None, biases_initializer=None, reuse=tf.AUTO_REUSE)
return outputs
def dilate_tensor(inputs, axes, shifts, scope):
for index, axis in enumerate(axes):
eles = tf.unstack(inputs, axis=axis, name=scope+'/unstack%s' % index)
zeros = tf.zeros_like(eles[0], dtype=tf.float32, name=scope+'/zeros%s' % index)
for ele_index in range(len(eles), 0, -1):
eles.insert(ele_index-shifts[index], zeros)
inputs = tf.stack(eles, axis=axis, name=scope+'/stack%s' % index)
return inputs
def get_mask(shape, scope):
new_shape = (np.prod(shape[:-2]), shape[-2], shape[-1])
mask = np.ones(new_shape, dtype=np.float32)
for i in range(0, new_shape[0], 2):
mask[i, :, :] = 0
mask = np.reshape(mask, shape, 'F')
return tf.constant(mask, dtype=tf.float32, name=scope+'/mask')
def pixel(x):
"""
inputs: input tensor
out_num: output channel number
kernel_size: convolutional kernel size
scope: operation scope
activation_fn: activation function, could be None if needed
"""
axis = (d_format.index('H'), d_format.index('W'))
conv0 = conv2d(x, out_num, kernel_size,
scope+'/conv0', d_format=d_format)
conv1 = conv2d(conv0, out_num, kernel_size,
scope+'/conv1', d_format=d_format)
dilated_conv0 = dilate_tensor(conv0, axis, (0, 0), scope+'/dialte_conv0')
dilated_conv1 = dilate_tensor(conv1, axis, (1, 1), scope+'/dialte_conv1')
conv1 = tf.add(dilated_conv0, dilated_conv1, scope+'/add1')
with tf.variable_scope(scope+'/conv2', reuse=tf.AUTO_REUSE):
shape = list(kernel_size) + [out_num, out_num]
weights = tf.get_variable(
'weights', shape, initializer=tf.truncated_normal_initializer())
weights = tf.multiply(weights, get_mask(shape, scope))
strides = [1, 1, 1, 1]
conv2 = tf.nn.conv2d(conv1, weights, strides, padding='SAME',
data_format=d_format)
outputs = tf.add(conv1, conv2, name=scope+'/add2')
if activation_fn:
outputs = activation_fn(outputs, alpha=0.2)
return outputs
return keras.layers.Lambda(pixel, output_shape=pixel_shape)
А вот откуда я это называю
def up_sampling_block(model, out_num, kernel_size, scale, scope):
model = Utils.pixel_dcl(model, out_num, kernel_size, str(scope), scale)(model)
return model
Эта ошибка возникает при прогнозировании выходных данных генератора, а не при компиляции генератора.