Вы можете использовать df.pivot()
:
data = {'No.': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14, 15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20, 21: 21, 22: 22}, 'TimeStamp': {0: '30-03-2019 23:59:50', 1: '31-03-2019 00:02:00', 2: '02-04-2019 18:44:00', 3: '02-04-2019 06:37:00', 4: '31-03-2019 00:04:19', 5: '30-03-2019 10:20:00', 6: '30-03-2019 10:21:22', 7: '30-03-2019 10:21:00', 8: '02-04-2019 18:44:00', 9: '02-04-2019 18:44:11', 10: '02-04-2019 18:44:00', 11: '04-04-2019 14:49:44', 12: '04-04-2019 14:49:44', 13: '04-04-2019 14:49:44', 14: '04-04-2019 14:49:44', 15: '01-04-2019 15:16:32', 16: '06-04-2019 01:04:00', 17: '06-04-2019 01:16:00', 18: '06-04-2019 01:16:00', 19: '06-04-2019 01:16:00', 20: '06-04-2019 01:18:00', 21: '06-04-2019 01:18:00', 22: '06-04-2019 01:19:00'}, 'Event': {0: 'A', 1: 'B', 2: 'A', 3: 'A', 4: 'C', 5: 'B', 6: 'D', 7: 'E', 8: 'B', 9: 'B', 10: 'C', 11: 'D', 12: 'E', 13: 'E', 14: 'C', 15: 'C', 16: 'A', 17: 'B', 18: 'B', 19: 'D', 20: 'E', 21: 'C', 22: 'A'}}
df = pd.DataFrame(data, columns =['No.', 'TimeStamp', 'Event'], dtype=str)
#Convert TimeStamp to datetime
df.TimeStamp = pd.to_datetime(df.TimeStamp, format='%d-%m-%Y %H:%M:%S')
#Add a count column which we will use in a pivot table
df['count'] = 1
#Pivot table
df2 = df.pivot(index='No.', columns='Event', values='count').reset_index()
#Merging original df and df2
final_df = pd.merge(df, df2, on='No.')[ ['TimeStamp'] + list(df.Event.unique())]
final_df['date'] = final_df.TimeStamp.apply(lambda x : x.date())
final_df = final_df.groupby(by='date').agg({x: 'count' for x in list(df.Event.unique())}).reset_index()
print(final_df)
выход
+----+-------------+----+----+----+----+---+
| | date | A | B | C | D | E |
+----+-------------+----+----+----+----+---+
| 0 | 2019-03-30 | 1 | 1 | 0 | 1 | 1 |
| 1 | 2019-03-31 | 0 | 1 | 1 | 0 | 0 |
| 2 | 2019-04-01 | 0 | 0 | 1 | 0 | 0 |
| 3 | 2019-04-02 | 2 | 2 | 1 | 0 | 0 |
| 4 | 2019-04-04 | 0 | 0 | 1 | 1 | 2 |
| 5 | 2019-04-06 | 2 | 2 | 1 | 1 | 1 |
+----+-------------+----+----+----+----+---+