Усредненные. Давайте посмотрим:
labels = tf.constant([0,1,0], dtype=tf.float32)
predictions = tf.constant([0.5,1.0,0.0], dtype=tf.float32)
sess = tf.Session()
loss = keras.losses.binary_crossentropy(y_true=labels, y_pred=predictions)
print(sess.run(loss))
# 0.23104914
print(loss)
# Tensor("Mean:0", shape=(), dtype=float32)
Дополнительно:
loss = tf.keras.backend.binary_crossentropy(target=labels, output=predictions)
print(np.mean(sess.run(loss)))
# 0.23104914