У меня есть следующий код для создания последовательностей кадра данных, который загрузил данные CSV о коэффициентах дождей.
import pandas as pd
import numpy as np
import sklearn
import sklearn.preprocessing
seq_len = 1100
def load_data(df_, seq_len):
data_raw = df_.values # convert to numpy array
data = []
data = np.array([data_raw[index: index + seq_len] for index in range(len(data_raw) - (seq_len+1))])
print(data.shape)
df = pd.read_csv("data.csv",index_col = 0)
temp = df.copy()
temp = normalize_data(temp)
load_data(df_, seq_len)temp
Когда я запустил функцию load_data(df_, seq_len)temp
, мне пришлось ждать много времени. Я не понимаю, является ли это проблемой seq_len
.
Вот прикрепленный набор данных: data.csv
Пожалуйста, помогите мне сделать это быстрее. Может случиться так, что в будущем у меня будет больше данных. Но если это станет быстрее, мне не нужно беспокоиться о будущих данных.
** РЕДАКТИРОВАНИЕ: ** Согласно @ParitoshSingh Comment .. Вот часть набора данных. Но не считайте, что это данные. Это просто часть больших данных:
,rains_ratio_2013,rains_ratio_2014
0,1.12148,1.1216
1,1.12141,1.12162
2,1.12142,1.12163
3,1.12148,1.1216
4,1.12143,1.12165
5,1.12141,1.12161
6,1.1213799999999998,1.12161
7,1.1214,1.12158
8,1.1214,1.12158
9,1.12141,1.12158
10,1.12141,1.12161
11,1.12144,1.1215899999999999
12,1.12141,1.12162
13,1.12141,1.12161
14,1.12143,1.12161
15,1.12143,1.1216899999999999
16,1.12143,1.12173
17,1.12143,1.12178
18,1.1214600000000001,1.12179
19,1.12148,1.12174
20,1.12148,1.1217
21,1.12148,1.12174
22,1.12148,1.1217
23,1.12145,1.1217
24,1.12145,1.1217
25,1.12148,1.1217
26,1.1214899999999999,1.1217
27,1.1214899999999999,1.1216899999999999
28,1.12143,1.1216899999999999
29,1.12143,1.1216899999999999
30,1.12144,1.1216899999999999