Использование aggregate()
для вычисления средних значений.
# Some example data
set.seed(1)
i_h100 <- round(runif(100, 2, 30), 2)
i_cd <- rexp(100, 1/i_h100)
mydata <- data.frame(i_cd, i_h100)
# Grouping i_h100
mydata$i_h100_2m <- cut(mydata$i_h100, seq(2, 30, by=2))
head(mydata)
# i_cd i_h100 i_h100_2m
# 1 2.918093 9.43 (8,10]
# 2 13.735728 12.42 (12,14]
# 3 13.966347 18.04 (18,20]
# 4 2.459760 27.43 (26,28]
# 5 8.477551 7.65 (6,8]
# 6 6.713224 27.15 (26,28]
# Calculate groupwise means of i_cd
i_cd_2m_mean <- aggregate(i_cd ~ i_h100_2m, mydata, mean)
# And IQR
i_cd_2m_iqr <- aggregate(i_cd ~ i_h100_2m, mydata, IQR)
upper <- i_cd_2m_mean[,2]+(i_cd_2m_iqr[,2]/2)
lower <- i_cd_2m_mean[,2]-(i_cd_2m_iqr[,2]/2)
# Plotting the result
plot.default(i_cd_2m_mean, xaxt="n", ylim=range(c(upper, lower)),
main="Groupwise means \U00B1 0.5 IQR", type="n")
points(upper, pch=2, col="lightblue", lwd=1.5)
points(lower, pch=6, col="pink", lwd=1.5)
points(i_cd_2m_mean, pch=16)
axis(1, i_cd_2m[,1], as.character(i_cd_2m[,1]), cex.axis=0.6, las=2)
