Я узнал о функции replace
, которая может стать моим другом
dat1 <- data.frame(matrix(1:12, 3, 4))
rpl <- c(2, 4, 1)
t(sapply(seq_along(rpl), function(x) replace(dat1[x, ], rpl[x], NA)))
# X1 X2 X3 X4
# [1,] 1 NA 7 10
# [2,] 2 5 8 NA
# [3,] NA 6 9 12
но я не заставил его работать в более сложных ситуациях замены:
(M <- structure(c(3L, 9L, 14L, 16L, 6L, 8L, 10L, 15L, 1L, 4L, 11L,
13L, 2L, 5L, 7L, 12L), .Dim = c(4L, 4L), .Dimnames = list(NULL,
NULL)))
# [,1] [,2] [,3] [,4]
# [1,] 3 6 1 2
# [2,] 9 8 4 5
# [3,] 14 10 11 7
# [4,] 16 15 13 12
dat2 <- data.frame(x=matrix(NA, 16))
> sapply(1:4, function(j) replace(dat2$x, M[, j], j))
[,1] [,2] [,3] [,4]
[1,] NA NA 3 NA
[2,] NA NA NA 4
[3,] 1 NA NA NA
[4,] NA NA 3 NA
[5,] NA NA NA 4
[6,] NA 2 NA NA
[7,] NA NA NA 4
[8,] NA 2 NA NA
[9,] 1 NA NA NA
[10,] NA 2 NA NA
[11,] NA NA 3 NA
[12,] NA NA NA 4
[13,] NA NA 3 NA
[14,] 1 NA NA NA
[15,] NA 2 NA NA
[16,] 1 NA NA NA
Результаты распределяются в матрице вместо изменения только столбца, тогда как цикл for
или sapply
дают мне то, что я хочу:
for (j in 1:4) dat2$x[M[, j]] <- j
# or
sapply(1:4, function(j) dat2$x[M[, j]] <<- j)
> dat3
x
1 3
2 4
3 1
4 3
5 4
6 2
7 4
8 2
9 1
10 2
11 3
12 4
13 3
14 1
15 2
16 1
Как правильно использовать replace
в этом / таком более сложном случае?
Кстати, почему у <<-
такая плохая репутация, хотя она и выполняет свое предназначение, по крайней мере, в этом случае? (Или это просто проблема мышления, потому что я что-то «слышал» ??). Есть ли пример, где это действительно плохая практика, если она не используется в функции, которая случайно уничтожает что-то в глобальной среде?