Я пытаюсь использовать последовательность чисел (фиксированной длины), чтобы предсказать двоичный вывод (1 или 0), используя Keras и рекуррентную нейронную сеть.
Каждый обучающий пример / последовательность имеет 10 временных шагов, каждый из которых содержит последовательность из 5 чисел, а выходные данные обучения состоят из 1 или 0.
Я пытался реализовать это с помощью Keras, но потери перестают уменьшаться после первой эпохи обучения.
Входные данные для обучения следующие: (с добавлением нуля)
array([[[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
...,
[1.24829336, 0.96461449, 3.35142857, 0.74675 , 0.776075 ],
[1.248303 , 0.96427925, 0. , 1.317225 , 1.317225 ],
[1.24831488, 0.96409169, 2.74857143, 1.353775 , 1.377825 ]],
[[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
...,
[1.24969672, 0.96336315, 0. , 1.319725 , 1.319725 ],
[1.24968077, 0.96331624, 0. , 1.33535 , 1.33535 ],
[1.24969598, 0.96330252, 5.01714286, 1.3508 , 1.3947 ]],
[[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
...,
[0. , 0. , 0. , 0. , 0. ],
[1.25715364, 0.95520672, 2.57714286, 1.04565 , 1.0682 ],
[1.25291274, 0.96879701, 7.76 , 1.311875 , 1.379775 ]],
...,
[[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. ],
...,
[1.24791079, 0.96561021, 4.44 , 0.7199 , 0.75875 ],
[1.25265263, 0.96117379, 2.09714286, 0.7636 , 0.78195 ],
[1.25868651, 0.96001674, 3.01142857, 1.35235 , 1.3787 ]]])
Результаты обучения следующие:
array([[0.],
[0.],
[0.],
...,
[0.],
[0.],
[0.]])
Это модель, которую я пытался тренировать:
#Model
model = Sequential()
model.add(LSTM(100, input_shape= (10, 5)))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
print(model.summary())
model.fit(X_train, y_train, validation_data = (X_test, y_test), epochs = 100, batch_size = 1000)