Вы, вероятно, можете использовать замечательную библиотеку numpy
, с помощью которой вы можете реорганизовать форму ваших входных данных несколькими различными способами. Одним из возможных решений может быть следующее:
import numpy as np
from sklearn.naive_bayes import GaussianNB
labels = [[0,0,0,1,1,0],
[0,0,1,0,1,1]]
features = [[[0.1,0.2,0.3,0.4,0.5],
[0.11,0.21,0.31,0.41,0.51],
[0.12,0.22,0.32,0.42,0.52],
[0.12,0.22,0.32,0.42,0.52],
[0.12,0.22,0.32,0.43,0.53],
[0.13,0.23,0.33,0.43,0.53]],
[[0.1,0.2,0.3,0.4,0.5],
[0.11,0.21,0.31,0.41,0.51],
[0.12,0.22,0.32,0.42,0.52],
[0.12,0.22,0.32,0.42,0.52],
[0.12,0.22,0.32,0.43,0.53],
[0.13,0.23,0.33,0.43,0.53]]]
labels = np.ravel(labels)
features = np.reshape(features, (-1, 5))
gnb = GaussianNB()
gnb.fit(features, labels)