Мы могли бы построить наш собственный fuzzyMatcher
.
Во-первых, нам понадобится векторизованная agrep
функция,
agrepv <- function(x, y) all(as.logical(sapply(x, agrep, y)))
на котором мы строим fuzzyMatcher
.
fuzzyMatcher <- function(from, to) {
mc <- mapply(function(y)
which(mapply(function(x) agrepv(y, x), Map(levels, to))),
Map(levels, from))
return(Map(function(x, y) `levels<-`(x, y), base,
Map(levels, from)[mc]))
}
final
метки, примененные к base
меткам ( примечание, , что я сместил столбцы, чтобы сделать его немного более сложным):
base[] <- fuzzyMatcher(final1, base1)
# X1 X2
# 1 Aa Xx
# 2 Aa Xx
# 3 Aa Yy
# 4 Aa Yy
# 5 Bb Yy
# 6 Bb Zz
# 7 Bb Zz
# 8 Aa Xx
# 9 Cc Xx
# 10 Cc Zz
Обновление
Основываясь на новых предоставленных данных выше, имеет смысл использовать еще один векторизованный agrepv2()
, который при использовании с outer()
позволяет нам применять agrep
ко всем комбинациям уровней обоих векторов. В дальнейшем colSums
, равные нулю, дают нам несовпадающие уровни, а which.max
сопоставляющие уровни целевого фрейма данных final
. Мы можем использовать эти два результирующих вектора, с одной стороны, для удаления неиспользуемых строк final
, с другой стороны, для поднабора желаемых уровней фрейма данных base
, чтобы перестроить столбец коэффициентов.
# add to mimic other columns in data frame
base$x <- seq(nrow(base))
final$x <- seq(nrow(final))
# some abbrevations for convenience
p1 <- levels(base$product)
p2 <- levels(final$product)
# agrep
AGREPV2 <- Vectorize(function(x, y, ...) agrep(p2[x], p1[y])) # new vectorized agrep
out <- t(outer(seq(p2), seq(p1), agrepv2, max.distance=0.9)) # apply `agrepv2`
del.col <- grep(0, colSums(apply(out, 2, lengths))) # find negative matches
lvl <- unlist(apply(out, 2, which.max)) # find positive matches
lvl <- as.character(p2[lvl]) # get the labels
# delete "non-existing" rows and re-generate factor with new labels
transform(final[-del.col, ], product=factor(product, labels=lvl))
# product x
# 1 Business Call 1
# 2 Business Transactional 2
# 4 OCR based Call 4
# 5 Offsale Call 5
# 6 Offsale Savings 6
# 7 Offsale Transactional 7
# 8 Out of Scope 8
# 9 Personal Call 9
Данные
base1 <- structure(list(X1 = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L,
3L, 3L), .Label = c("a", "b", "c"), class = "factor"), X2 = structure(c(1L,
1L, 2L, 2L, 2L, 3L, 3L, 1L, 1L, 3L), .Label = c("x", "y", "z"
), class = "factor")), row.names = c(NA, -10L), class = "data.frame")
final1 <- structure(list(X1 = structure(c(1L, 3L, 1L, 1L, 2L, 3L, 2L, 1L,
2L, 2L, 3L, 3L, 2L, 2L, 2L), .Label = c("Xx", "Yy", "Zz"), class = "factor"),
X2 = structure(c(2L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 3L), .Label = c("Aa", "Bb", "Cc"), class = "factor")), row.names = c(NA,
-15L), class = "data.frame")