У меня есть Bucketiterator
из torchtext
, который я передаю модели в pytorch
.Пример построения итератора:
train_iter, val_iter = BucketIterator.splits((train,val),
batch_size=batch_size,
sort_within_batch = True,
device = device,
shuffle=True,
sort_key=lambda x: (len(x.src), len(x.trg)))
Затем данные поступают в такую модель, где я использую слой nn.Embedding
.
class encoder(nn.Module):
def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):
super().__init__()
self.input_dim = input_dim
self.emb_dim = emb_dim
self.hid_dim = hid_dim
self.n_layers = n_layers
self.dropout = dropout
self.embedding = nn.Embedding(input_dim, emb_dim)
self.rnn = nn.LSTM(emb_dim, hid_dim, n_layers, dropout = dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src):
#src = [src sent len, batch size]
embedded = self.dropout(self.embedding(src))
#embedded = [src sent len, batch size, emb dim]
hidden_enc = []
outputs, hidden = self.rnn(embedded[0,:,:].unsqueeze(0))
for i in range(1,len(embedded[:,1,1])):
outputs, hidden = self.rnn(embedded[i,:,:].unsqueeze(0),hidden)
hidden_cpu = []
for k in range(len(hidden)):
hidden_cpu.append(hidden[k])
hidden_cpu[k] = hidden[k].cpu()
hidden_enc.append(tuple(hidden_cpu))
#outputs, hidden = self.rnn(embedded)
#outputs = [src sent len, batch size, hid dim * n directions]
#hidden = [n layers * n directions, batch size, hid dim]
#cell = [n layers * n directions, batch size, hid dim]
None
#outputs are always from the top hidden layer
return hidden, hidden_enc
Но что, если бы я хотел, чтобы вложение было закодировано горячим способом?Я работаю над формальными языками, и было бы неплохо сохранить ортогональность между токенами.Похоже, что pytorch
или torchtext
не имеет какой-либо функциональности для этого.