Я пытаюсь реализовать CNN для идентификации цифр в наборе данных MNIST, и мой код обнаруживает ошибку в процессе загрузки данных. Я не понимаю, почему это происходит.
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5), (0.5))
])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=20, shuffle=True, num_workers=2)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=20, shuffle=False, num_workers=2)
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0], data[1]
Ошибка:
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-6-b37c638b6114> in <module>
2
----> 3 for i, data in enumerate(trainloader, 0):
4 inputs, labels = data[0], data[1]
# ...
IndexError: Traceback (most recent call last):
File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/_utils/worker.py", line 99, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/_utils/worker.py", line 99, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/opt/conda/lib/python3.6/site-packages/torchvision/datasets/mnist.py", line 95, in __getitem__
img = self.transform(img)
File "/opt/conda/lib/python3.6/site-packages/torchvision/transforms/transforms.py", line 61, in __call__
img = t(img)
File "/opt/conda/lib/python3.6/site-packages/torchvision/transforms/transforms.py", line 164, in __call__
return F.normalize(tensor, self.mean, self.std, self.inplace)
File "/opt/conda/lib/python3.6/site-packages/torchvision/transforms/functional.py", line 208, in normalize
tensor.sub_(mean[:, None, None]).div_(std[:, None, None])
IndexError: too many indices for tensor of dimension 0