ваш NullPointerException
НЕ действителен. Я подтвердил пример программы, как показано ниже.
его прекрасно работающий штраф. Вы выполняете следующую программу.
package com.example
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.expressions.UserDefinedFunction
object MapLookupDF {
Logger.getLogger("org").setLevel(Level.OFF)
def main(args: Array[String]) {
import org.apache.spark.sql.functions._
val spark = SparkSession.builder.
master("local[*]")
.appName("MapLookupDF")
.getOrCreate()
import spark.implicits._
val mydf = Seq((1, "a"), (2, "0000"), (3, "c"), (4, "0000")).toDF("col1", "col2")
mydf.show
val myMap: Map[String, String] = Map("2" -> "b", "4" -> "d")
println(myMap.toString)
val broadcastMyMap = spark.sparkContext.broadcast(myMap)
def lookup: UserDefinedFunction = udf((key: String) => {
println("getting the value for the key " + key)
broadcastMyMap.value.get(key)
}
)
val finaldf = mydf.withColumn("col2", when($"col2" === "0000", lookup($"col1")).otherwise($"col2"))
finaldf.show
}
}
Результат:
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
+----+----+
|col1|col2|
+----+----+
| 1| a|
| 2|0000|
| 3| c|
| 4|0000|
+----+----+
Map(2 -> b, 4 -> d)
getting the value for the key 2
getting the value for the key 4
+----+----+
|col1|col2|
+----+----+
| 1| a|
| 2| b|
| 3| c|
| 4| d|
+----+----+
примечание: не будет существенной деградации для небольшой карты, транслируемой.
если вы хотите перейти с фреймом данных, вы можете перейти как конвертировать карту в фрейм данных
val df = myMap.toSeq.toDF("key", "val")
Map(2 -> b, 4 -> d) in dataframe format will be like
+----+----+
|key|val |
+----+----+
| 2| b|
| 4| d|
+----+----+
, а затем присоединиться как this
DIY ...