Как я могу создать массив n измерений с некоторыми жестко закодированными значениями? - PullRequest
0 голосов
/ 18 апреля 2019

Я пытаюсь:

target = keras.utils.to_categorical([0], num_classes)

Это дает мне:

[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

Однако я хочу создать что-то вроде:

[
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.],
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.],
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
...
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.],
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
]

где будет 10000 строк.

Ответы [ 4 ]

3 голосов
/ 18 апреля 2019

Использование функции numpy.repeat должно решить проблему:

target = np.array(target)
numpy.repeat(target , 10000, axis=0)

вы указываете массив, сколько раз вы хотите повторить каждую ось и ось.

2 голосов
/ 18 апреля 2019
import keras
import numpy as np
num_classes = 10
num_rows = 10000

target = keras.utils.to_categorical(np.random.choice(num_classes,num_rows), num_classes)
1 голос
/ 18 апреля 2019
Go with basic 

   import numpy as np
   np.arange(100).reshape(5,2,10)
   # output:
   array([[[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]],

       [[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]],

       [[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
        [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]],

       [[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
        [70, 71, 72, 73, 74, 75, 76, 77, 78, 79]],

       [[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
        [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]]])

run it.

you may add random, ones, zeros, empty etc it's on you how you wanna go 
1 голос
/ 18 апреля 2019

Используйте np.tile и reshape. В ответе ниже используйте n=10000, чтобы получить желаемый ответ

target = np.array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
n = 2
target_new = np.tile(target, 2).reshape(n, len(target[0]))

# array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
#        [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...