Мы можем использовать summarise_at
в dplyr
.После группировки по классу выполните цикл по столбцам, у которых в именах столбцов в summarise_at
указан год matches
, и получите значения sum
, которые не равны 0
library(dplyr)
df1 %>%
group_by(Class) %>%
summarise_at(vars(matches("Year")), list(~ sum(as.logical(.))))
# A tibble: 3 x 5
# Class Year_1999 Year_2000 Year_2001 Year_2002
# <int> <int> <int> <int> <int>
#1 1 1 2 2 2
#2 2 1 2 2 1
#3 3 0 1 1 1
Или мы можем gather
в «длинный» формат, выполнить операцию group_by
для одного столбца и spread
в «широкий» формат
library(tidyr)
df1 %>%
gather(key, val, matches("Year")) %>%
group_by(Class, key) %>%
summarise(val = sum(val != 0)) %>%
spread(key, val)
Или с помощью data.table
library(data.table)
setDT(df1)[, lapply(.SD, function(x) sum(as.logical(x))), .(Class), .SDcols = 5:8]
Или используя base R
с aggregate
aggregate(.~ Class, df1[-(2:4)], function(x) sum(x != 0))
# Class Year_1999 Year_2000 Year_2001 Year_2002
#1 1 1 2 2 2
#2 2 1 2 2 1
#3 3 0 1 1 1
Или используя rowsum
rowsum(+(!!df1[5:8]), df1$Class)
# Year_1999 Year_2000 Year_2001 Year_2002
#1 1 2 2 2
#2 1 2 2 1
#3 0 1 1 1
или используя colSums
t(sapply(split(as.data.frame(df1[5:8] != 0), df1$Class), colSums))
data
df1 <- structure(list(Class = c(1L, 2L, 1L, 2L, 3L), Students = c("Mark",
"John", "Tom", "Jane", "Kim"), Gender = c("M", "M", "M", "F",
"F"), Height = c(180L, 234L, 124L, 180L, 140L), Year_1999 = c(80L,
0L, 0L, 80L, 0L), Year_2000 = c(54L, 59L, 53L, 54L, 2L), Year_2001 = c(22L,
32L, 26L, 22L, 3L),
Year_2002 = c(12L, 62L, 12L, 0L, 32L)), class = "data.frame",
row.names = c(NA,
-5L))