tenorflow.python.framework.errors_impl.InvalidArgumentError: необходимо указать значение для тензора-заполнителя - PullRequest
0 голосов
/ 06 апреля 2019

Я определил и обучил модель автоэнкодера следующим образом:

input_enc = Input(batch_shape=(batch_size, seq_len, n_features), name='encoder_input')
first_enc = LSTM(32, activation='tanh', dropout=0.1, recurrent_dropout=0.1, return_sequences=True, stateful=True, name='encoder_first_layer')(input_enc)
if output_dropout:
    first_enc = Dropout(0.2)(first_enc)
encoded, hidden_state, cell_state = LSTM(14, activation='tanh', dropout=0.1, recurrent_dropout=0.1, return_sequences=False, return_state=True , stateful=True, name='encoded')(first_enc)
decoder_input = RepeatVector(28, name='repeatVector')(encoded)
first_dec = LSTM(32, return_sequences=True, name='decoder_first_layer')(decoder_input)
out_decoder = LSTM(1, return_sequences=True, name='decoder_output_layer')(first_dec)

autoencoder_model = Model(input_enc, out_decoder)
encoder_model = Model(inputs=input_enc, outputs=[encoded, hidden_state, cell_state])

Форма ввода для модели автоэнкодера (n_samples, seq_len=28, n_features=1) и batch_size = 138 После попытки автоэнкодера я загружаю часть энкодера и использую ее как вход для другой модели.

input_layer = Input(batch_shape=(batch_size, seq_len, n_features), name='ae_prediction_input')
encoder_first_layer = encoder.layers[1](input_layer)
encoded_layer, h_state, c_state = encoder.layers[2](encoder_first_layer)
first_layer = Dense(24, input_dim=28, activation=activation, name="first_dense_layer")(h_state)
if dropout:
    first_layer = Dropout(0.2, name="first_dropout_layer")(first_layer)
second_layer = Dense(12, activation=activation, name="second_dense_layer")(first_layer)
if dropout:
    second_layer = Dropout(0.2, name="snd_dropout_layer")(second_layer)
out = Dense(1, name='output_layer')(second_layer)
new_model = Model(input_layer, out)
new.compile(loss='mean_squared_error', optimizer=rmsprop_optimizer)
history = new_model.fit(train_data, train_y, epochs=5, callbacks=[earlyStopping], batch_size=batch_size
                        , validation_data=(validation_data, validation_y), shuffle=False)

Сначала я пытался использовать входной слой кодера, но он выдает мне эту ошибку: ValueError: Layer encoder_first_layer was called with an input that isn't a symbolic tensor. Received type: <class 'eras.engine.input_layer.InputLayer'>.Full input: [<keras.engine.input_layer.InputLayer object at 0x13b97ced0>]. All inputs to the layer should be tensors. Итак, вместо этого я создаю новый входной слой и поверх него добавляю первый слой LSTM предварительно обученного режим кодировщика. Когда я пытаюсь соответствовать new_model, первая эпоха запускается, и в конце первой эпохи я получаю следующую ошибку:

tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'encoder_input' with dtype float and shape [138,28,1]
     [[{{node encoder_input}} = Placeholder[dtype=DT_FLOAT, shape=[138,28,1], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

В чем проблема? Почему запускаются первые эпохи, и после этого он запоминает, что входной слой кодера не получает значения?

ОБНОВЛЕНИЕ : похоже, проблема связана с данными проверки. В конце последней эпохи Keras проверяет данные проверки и запускает их. Вот где это дает эту ошибку.

1 Ответ

0 голосов
/ 12 мая 2019

Благодаря ответу @ thushv89 я исправил код следующим образом:

encoder = load_model(encoder_path)

input_enc = Input(batch_shape=(batch_size, seq_len, n_features), name='ae_prediction_input')
first_enc = LSTM(encoder.layers[1].units, activation=activation, dropout=encoder.layers[1].dropout, recurrent_dropout=encoder.layers[1].recurrent_dropout, return_sequences=True, stateful=encoder.layers[1].stateful)(input_enc)
encoded, hidden_state, cell_state = LSTM(encoder.layers[2].units, activation=activation, dropout=encoder.layers[2].dropout, recurrent_dropout=encoder.layers[2].recurrent_dropout , return_sequences=False, stateful=encoder.layers[2].stateful)(first_enc)

first_dense = Dense(24, input_dim=28, activation=activation,name="first_dense_layer")(h_state)
if dropout:
    first_dense = Dropout(0.2, name="first_dropout_layer")(first_dense)
second_layer = Dense(12, activation=activation, name="second_dense_layer")(first_dense)
if dropout:
    second_layer = Dropout(0.2, name="snd_dropout_layer")(second_layer)
out = Dense(1, name='output_layer')(second_layer)

model = Model(input_enc, out)
model.layers[1].set_weights(encoder.layers[1].get_weights())
model.layers[2].set_weights(encoder.layers[2].get_weights())
...