В руководстве метод similarity_score()
пытается найти наибольшее сходство для каждого набора в s1 и усреднить их. Тем не менее, не учитывает слова в s1, которые не смогли найти никакой синтаксис в s2. Для меня имеет больше смысла, если мы добавим нули в s1_largest_scores
для этих случаев.
Возьмем, к примеру, два предложения "Will it be uncomfortably hot?"
и "will it rain"
. Метод в этом уроке даст вам 1 за сходство, а метод, который я определил, даст вам 0,53 за сходство. Предложения находятся в разных категориях, поэтому мы хотели бы, чтобы сходство было низким.
Вот мой код:
import re
import nltk
from nltk.corpus import wordnet as wn
from nltk.corpus import genesis
import ssl
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
nltk.download('genesis')
nltk.download('wordnet')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
genesis_ic = wn.ic(genesis, False, 0.0)
import numpy as np
import pandas as pd
from nltk.tokenize import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import SnowballStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.corpus import stopwords
from sklearn.metrics import roc_auc_score
from nltk.stem.wordnet import WordNetLemmatizer
class KNN_NLC_Classifer():
def __init__(self, k=1, distance_type = 'path'):
self.k = k
self.distance_type = distance_type
# This function is used for training
def fit(self, x_train, y_train):
self.x_train = x_train
self.y_train = y_train
# This function runs the K(1) nearest neighbour algorithm and
# returns the label with closest match.
def predict(self, x_test):
self.x_test = x_test
y_predict = []
for i in range(len(x_test)):
max_sim = 0
max_index = 0
for j in range(self.x_train.shape[0]):
temp = self.document_similarity(x_test[i], self.x_train[j])
if temp > max_sim:
max_sim = temp
max_index = j
y_predict.append(self.y_train[max_index])
return y_predict
def convert_tag(self, tag):
"""Convert the tag given by nltk.pos_tag to the tag used by wordnet.synsets"""
tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'}
try:
return tag_dict[tag[0]]
except KeyError:
return None
def doc_to_synsets(self, doc):
"""
Returns a list of synsets in document.
Tokenizes and tags the words in the document doc.
Then finds the first synset for each word/tag combination.
If a synset is not found for that combination it is skipped.
Args:
doc: string to be converted
Returns:
list of synsets
"""
tokens = word_tokenize(str(doc)+' ')
l = []
tags = nltk.pos_tag([tokens[0] + ' ']) if len(tokens) == 1 else nltk.pos_tag(tokens)
for token, tag in zip(tokens, tags):
syntag = self.convert_tag(tag[1])
syns = wn.synsets(token, syntag)
if (len(syns) > 0):
l.append(syns[0])
return l
def similarity_score(self, s1, s2, distance_type = 'path'):
"""
Calculate the normalized similarity score of s1 onto s2
For each synset in s1, finds the synset in s2 with the largest similarity value.
Sum of all of the largest similarity values and normalize this value by dividing it by the
number of largest similarity values found.
Args:
s1, s2: list of synsets from doc_to_synsets
Returns:
normalized similarity score of s1 onto s2
"""
s1_largest_scores = []
for i, s1_synset in enumerate(s1):
max_score = 0
for s2_synset in s2:
if distance_type == 'path':
score = s1_synset.path_similarity(s2_synset, simulate_root=False)
else:
score = s1_synset.wup_similarity(s2_synset)
if score != None and score > max_score:
max_score = score
# if max_score != 0:
s1_largest_scores.append(max_score)
mean_score = np.mean(s1_largest_scores)
return mean_score
def document_similarity(self,doc1, doc2):
"""Finds the symmetrical similarity between doc1 and doc2"""
synsets1 = self.doc_to_synsets(doc1)
synsets2 = self.doc_to_synsets(doc2)
return (self.similarity_score(synsets1, synsets2) + self.similarity_score(synsets2, synsets1)) / 2
# 1. Importing the dataset
#we'll use the demo dataset available at Watson NLC Classifier Demo.
FILENAME = "https://raw.githubusercontent.com/watson-developer-cloud/natural-language-classifier-nodejs/master/training/weather_data_train.csv"
dataset = pd.read_csv(FILENAME, header = None)
dataset.rename(columns = {0:'text', 1:'answer'}, inplace = True)
dataset['output'] = np.where(dataset['answer'] == 'temperature', 1,0)
Num_Words = dataset.shape[0]
print(dataset)
print("\nSize of input file is ", dataset.shape)
array = dataset.values
X = array[:,0]
Y = array[:,2]
validation_size = 0.20
seed = 7
# 4. Train the Classifier
classifier = KNN_NLC_Classifer(k=1, distance_type='path')
x_train,y_train = X, Y
classifier.fit(x_train, y_train)
final_test_list = [
'will it rain',
'Is it hot outside?',
'What is the expected high for today?',
'Will it be foggy tomorrow?',
'Should I prepare for sleet?',
'Will there be a storm today?',
'do we need to take umbrella today',
'will it be wet tomorrow',
'is it humid tomorrow',
'what is the precipitation today',
'is it freezing outside',
'is it cool outside',
'are there strong winds outside',
]
test_corpus = []
lmtzr = WordNetLemmatizer()
#ps = PorterStemmer()
for i in range(len(final_test_list)):
review = re.sub('[^a-zA-Z]', ' ', final_test_list[i])
review = review.lower()
review = review.split()
review = [lmtzr.lemmatize(word) for word in review] # if not word in s
review = ' '.join(review)
test_corpus.append(review)
y_pred_final = classifier.predict(test_corpus)
output_df = pd.DataFrame(data = {'text': final_test_list, 'code': y_pred_final})
output_df['answer'] = np.where(output_df['code']==1, 'Temperature', 'Conditions')
print(output_df)
А вот результат, который я считаю более разумным:
text code answer
0 will it rain 0 Conditions
1 Is it hot outside? 1 Temperature
2 What is the expected high for today? 1 Temperature
3 Will it be foggy tomorrow? 1 Temperature
4 Should I prepare for sleet? 0 Conditions
5 Will there be a storm today? 1 Temperature
6 do we need to take umbrella today 0 Conditions
7 will it be wet tomorrow 1 Temperature
8 is it humid tomorrow 1 Temperature
9 what is the precipitation today 1 Temperature
10 is it freezing outside 1 Temperature
11 is it cool outside 1 Temperature
12 are there strong winds outside 0 Conditions