Я тренирую многолинейный классификатор, используя tf.keras и horovod, который имеет 14 классов. AucRoc используется в качестве метрики для оценки производительности классификатора. Я хочу использовать калькулятор AucRoc Scikit Learn, как упомянуто здесь: Как вычислить Receiving Operating Characteristic (ROC) и AUC в кератах? . Если я подаю тензоры, как для следующей функции:
def sci_auc_roc(y_true, y_pred):
return tf.py_func(roc_auc_score(y_true, y_pred), tf.double)
Я получаю ошибку, которая выглядит следующим образом:
/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/keras_applications/resnet50.py:265: UserWarning: The output shape of `ResNet50(include_top=False)` has been changed since Keras 2.2.0.
warnings.warn('The output shape of `ResNet50(include_top=False)` '
Traceback (most recent call last):
File "official_resnet_tf_1.12.0_auc.py", line 531, in <module>
main()
File "official_resnet_tf_1.12.0_auc.py", line 420, in main
model = chexnet_model(FLAGS)
File "official_resnet_tf_1.12.0_auc.py", line 375, in chexnet_model
metrics=[tf_auc_roc,sci_auc_roc])
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/training/checkpointable/base.py", line 474, in _method_wrapper
method(self, *args, **kwargs)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 648, in compile
sample_weights=self.sample_weights)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 313, in _handle_metrics
output, output_mask))
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 270, in _handle_per_output_metrics
y_true, y_pred, weights=weights, mask=mask)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_utils.py", line 598, in weighted
score_array = fn(y_true, y_pred)
File "official_resnet_tf_1.12.0_auc.py", line 327, in sci_auc_roc
return tf.py_func(roc_auc_score(y_true, y_pred), tf.double)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/sklearn/metrics/ranking.py", line 349, in roc_auc_score
y_type = type_of_target(y_true)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/sklearn/utils/multiclass.py", line 243, in type_of_target
'got %r' % y)
ValueError: Expected array-like (array or non-string sequence), got <tf.Tensor 'dense_target:0' shape=(?, ?) dtype=float32>
Я пытаюсь преобразовать tf-тензоры в массив numpy, а затем передать их в метод roc_auc_score следующим образом:
def sci_auc_roc(y_true, y_pred):
with tf.Session() as sess:
y_true, y_pred = sess.run([y_true, y_pred])
return tf.py_func(roc_auc_score(y_true, y_pred), tf.double)
Я получаю следующую ошибку:
warnings.warn('The output shape of `ResNet50(include_top=False)` '
Traceback (most recent call last):
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1334, in _do_call
return fn(*args)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1319, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1407, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'input_1' with dtype float and shape [?,256,256,3]
[[{{node input_1}} = Placeholder[dtype=DT_FLOAT, shape=[?,256,256,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node dense_target/_5}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_2237_dense_target", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "official_resnet_tf_1.12.0_auc.py", line 531, in <module>
main()
File "official_resnet_tf_1.12.0_auc.py", line 420, in main
model = chexnet_model(FLAGS)
File "official_resnet_tf_1.12.0_auc.py", line 375, in chexnet_model
metrics=[tf_auc_roc,sci_auc_roc])
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/training/checkpointable/base.py", line 474, in _method_wrapper
method(self, *args, **kwargs)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 648, in compile
sample_weights=self.sample_weights)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 313, in _handle_metrics
output, output_mask))
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 270, in _handle_per_output_metrics
y_true, y_pred, weights=weights, mask=mask)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_utils.py", line 598, in weighted
score_array = fn(y_true, y_pred)
File "official_resnet_tf_1.12.0_auc.py", line 324, in sci_auc_roc
y_true, y_pred = sess.run([y_true, y_pred])
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1152, in _run
feed_dict_tensor, options, run_metadata)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1328, in _do_run
run_metadata)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1348, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'input_1' with dtype float and shape [?,256,256,3]
[[node input_1 (defined at /mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/keras_applications/resnet50.py:214) = Placeholder[dtype=DT_FLOAT, shape=[?,256,256,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node dense_target/_5}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_2237_dense_target", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Caused by op 'input_1', defined at:
File "official_resnet_tf_1.12.0_auc.py", line 531, in <module>
main()
File "official_resnet_tf_1.12.0_auc.py", line 420, in main
model = chexnet_model(FLAGS)
File "official_resnet_tf_1.12.0_auc.py", line 339, in chexnet_model
input_shape=(FLAGS.image_size, FLAGS.image_size, 3))
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/applications/__init__.py", line 70, in wrapper
return base_fun(*args, **kwargs)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/applications/resnet50.py", line 32, in ResNet50
return resnet50.ResNet50(*args, **kwargs)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/keras_applications/resnet50.py", line 214, in ResNet50
img_input = layers.Input(shape=input_shape)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/input_layer.py", line 229, in Input
input_tensor=tensor)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/keras/engine/input_layer.py", line 112, in __init__
name=self.name)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 1747, in placeholder
return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 5206, in placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3274, in create_op
op_def=op_def)
File "/mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1770, in __init__
self._traceback = tf_stack.extract_stack()
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_1' with dtype float and shape [?,256,256,3]
[[node input_1 (defined at /mnt/lustrefs/rakvee/miniconda3/envs/docker_pip2/lib/python3.6/site-packages/keras_applications/resnet50.py:214) = Placeholder[dtype=DT_FLOAT, shape=[?,256,256,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node dense_target/_5}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_2237_dense_target", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
--------------------------------------------------------------------------
Primary job terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been aborted.
--------------------------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:
Process name: [[52342,1],0]
Exit code: 1
--------------------------------------------------------------------------
Я также пробовал тензорный поток https://www.tensorflow.org/api_docs/python/tf/metrics/auc примерно так:
def tf_auc_roc(y_true, y_pred):
auc = tf.metrics.auc(y_true, y_pred)[1]
K.get_session().run(tf.local_variables_initializer())
return auc
Работает просто отлично. Тем не менее, это дает мне один номер для aucroc. Интересно, что представляет это число, является ли оно средним значением aucroc для всех 14 классов? или максимальные оценки всех классов? или как доходит до одного номера?
1216/1216 [==============================] - 413s 340ms/step - loss: 0.1513 - tf_auc_roc: 0.7944 - val_loss: 0.2212 - val_tf_auc_roc: 0.8074
Epoch 2/15
582/1216 [=============>................] - ETA: 3:16 - loss: 0.1459 - tf_auc_roc: 0.8053
1) Как исправить ошибку с roc_auc_score?
2) Что представляет собой это единственное число?