EDIT:
Я пытаюсь собрать эти значения / Cols / Rows

** Цифры немного изменились.
Я пытаюсь извлечь попарно результат следующей матрицы.
ID1_2001 ID2_2001 ID3_2001 ID1_2000 ID2_2000
ID2_2001 0.96747537
ID3_2001 0.96850817 0.67983338
ID1_2000 0.11324889 0.97507292 0.97586446
ID2_2000 1.00000000 0.75336751 0.83321843 1.00000000
ID3_2000 1.00000000 0.76556229 0.81577353 1.00000000 0.05728332
Это значения 0.1132489
, 0.7533675
, 0.8157735
.
Благодаря другому пользователю на этом сайте мне известна следующая функция proxy::dist(m[1:3,], m[4:6,], pairwise=TRUE, method="cosine")
, которая дает мне только следующие результаты 0.1132489 0.7533675 0.8157735
.
Однако мне также хотелось бы получить имена столбцов и строк, откуда приходит результат. Таким образом, 0.1132489
будет присвоено ID1_2000_ID1_2001
, а 0.7533675
назначено ID2_2000_ID2_2001
и, наконец, 0.81577353
присвоено ID3_2000_ID3_2001
. Однако я не могу поместить эту матрицу расстояний во фрейм данных для доступа / извлечения строк и имен строк.
Было бы наиболее оптимально выполнить только следующие proxy::dist(m[1:3,], m[4:6,], pairwise=TRUE, method="cosine")
и получить попарные результаты вместе с их именами строк и строк (экономя время вычислений).
Как я могу заменить m[1:3]
на «группы», то есть взять группу 2001
, а затем группу 2000
. Поскольку я надеюсь увеличить это число до нескольких лет / идентификаторов, я не могу сосчитать строки 1:3
и 4:6
для всех лет / идентификаторов.
library(tidyr)
x <- m %>%
data.frame() %>%
tibble::rownames_to_column("rownames") %>%
separate(rownames, c("id", "year"), "_")
Другое:
dist.matrix = proxy::dist(m, pairwise = TRUE, method = "cosine")
proxy::dist(m[1:3,], m[4:6,], pairwise=TRUE, method="cosine")
Данные:
data <- structure(c(0.96747537487273, 0.968508167135111, 0.113248890901578,
1, 1, 0.67983337671352, 0.97507292188601, 0.753367507803825,
0.765562291938692, 0.975864460398726, 0.833218430412641, 0.815773525411265,
1, 1, 0.0572833227621783), Size = 6L, Labels = c("ID1_2001",
"ID2_2001", "ID3_2001", "ID1_2000", "ID2_2000", "ID3_2000"), class = "dist", Diag = FALSE, Upper = FALSE, method = "cosine", call = proxy::dist(x = m,
method = "cosine", pairwise = TRUE))
Данные 2 (m
)
m <- structure(c(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 3, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 8, 0,
0, 12, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0,
1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0,
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
3, 4, 0, 1, 3, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 3, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 3, 0, 0, 2, 2, 0, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
2, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 2, 0, 1, 1, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0,
0, 0, 0, 1, 1), .Dim = c(6L, 196L), .Dimnames = list(Docs = c("ID1_2001",
"ID2_2001", "ID3_2001", "ID1_2000", "ID2_2000", "ID3_2000"),
Terms = c("-field", "(22-yard)", "(doubles).", "(either",
"(known", "(singles)", "(specifically", "20-metre", "able",
"across", "activity", "adjudicated", "aided", "although",
"american", "appears", "appears.", "around", "association",
"australian", "badminton", "bails", "bails,", "balanced",
"ball", "bat--ball", "bat,", "batting", "beach", "bowled",
"bowled,", "bowling", "called", "can", "canadian", "casual",
"catching", "centre", "certain", "codes", "common", "commonly",
"communicate", "comprising", "context", "cord", "countries",
"countries);", "court", "court.", "covered", "cricket", "degrees",
"degrees,", "different", "dislodges", "dismiss", "dismissal",
"dismissed,", "doubles", "each", "either", "eleven", "end,",
"ends", "family", "felt", "field", "fielding", "football",
"football);", "football.[1][2]", "football;", "football12",
"form", "formal", "forms", "gaelic", "gain", "game", "games",
"goal", "goal.", "gridiron", "ground.", "half", "hit", "hits",
"hollow", "include", "individually", "indoor", "information.",
"innings", "international", "involve", "involve,", "kicking",
"known", "landing", "larger", "league", "maneuver", "match",
"match's", "matches.", "may", "means", "net", "object", "often",
"one", "opponent", "opponent's", "opposing", "opposite",
"outdoor", "per", "pitch", "places", "play", "played", "player",
"players", "point,", "points", "popular", "prevent", "racket",
"racquet", "racquets", "record", "rectangular", "refer",
"referee", "regional", "return", "return.", "roles.", "rubber",
"rugby", "rules", "runs", "score", "scored", "scorers", "scores",
"shuttlecock", "side", "sides", "single", "singles", "soccer",
"specifically", "sport", "sports", "statistical", "strike",
"striking", "strung", "stumps", "stumps.", "swap", "team",
"teams", "ten", "tennis", "the", "these", "they", "third",
"three", "tries", "two", "umpire", "umpires,", "unable",
"understood", "union", "union);", "unqualified", "unqualified,",
"uses", "using", "valid", "variations", "varying", "way",
"when", "whichever", "wicket", "will", "will.", "within",
"word", "yard")))
EDIT:
Я нашел этот обходной путь для вставки во фрейм данных. Не уверен, насколько эффективно это будет на большой матрице
x <- data.matrix(dist.matrix)
x <- as.data.frame(x)
EDIT2:
> data.frame(rownames(dist.matrix), colnames(dist.matrix), as.vector(dist.matrix))
rownames.dist.matrix. colnames.dist.matrix. as.vector.dist.matrix.
1 ID1_2001 ID2_2001 0.97192896
2 ID1_2001 ID2_2001 0.97288923
3 ID1_2001 ID2_2001 0.01505221
4 ID1_2001 ID2_2001 1.00000000
5 ID1_2001 ID2_2001 1.00000000
6 ID1_2001 ID2_2001 0.69527190
7 ID1_2001 ID2_2001 0.97565046
8 ID1_2001 ID2_2001 0.75908178
9 ID1_2001 ID2_2001 0.77099402
10 ID1_2001 ID2_2001 0.97648342
11 ID1_2001 ID2_2001 0.77840308
12 ID1_2001 ID2_2001 0.76921180
13 ID1_2001 ID2_2001 1.00000000
14 ID1_2001 ID2_2001 1.00000000
15 ID1_2001 ID2_2001 0.05728332
РЕДАКТИРОВАТЬ 3:
Я запускаю следующее;
dist.matrix = as.matrix(dist.matrix)
df <- data.frame(row = rownames(dist.matrix),
col = colnames(dist.matrix),
value = as.vector(dist.matrix))
Что дает мне следующий вывод:
row col value
1 ID1_2001 ID1_2001 0.00000000
2 ID2_2001 ID2_2001 0.97192896
3 ID3_2001 ID3_2001 0.97288923
4 ID1_2000 ID1_2000 0.01505221
5 ID2_2000 ID2_2000 1.00000000
6 ID3_2000 ID3_2000 1.00000000
7 ID1_2001 ID1_2001 0.97192896
8 ID2_2001 ID2_2001 0.00000000
9 ID3_2001 ID3_2001 0.69527190
10 ID1_2000 ID1_2000 0.97565046
11 ID2_2000 ID2_2000 0.75908178
12 ID3_2000 ID3_2000 0.77099402
13 ID1_2001 ID1_2001 0.97288923
14 ID2_2001 ID2_2001 0.69527190
15 ID3_2001 ID3_2001 0.00000000
16 ID1_2000 ID1_2000 0.97648342
17 ID2_2000 ID2_2000 0.77840308
18 ID3_2000 ID3_2000 0.76921180
19 ID1_2001 ID1_2001 0.01505221
20 ID2_2001 ID2_2001 0.97565046
21 ID3_2001 ID3_2001 0.97648342
22 ID1_2000 ID1_2000 0.00000000
23 ID2_2000 ID2_2000 1.00000000
24 ID3_2000 ID3_2000 1.00000000
25 ID1_2001 ID1_2001 1.00000000
26 ID2_2001 ID2_2001 0.75908178
27 ID3_2001 ID3_2001 0.77840308
28 ID1_2000 ID1_2000 1.00000000
29 ID2_2000 ID2_2000 0.00000000
30 ID3_2000 ID3_2000 0.05728332
31 ID1_2001 ID1_2001 1.00000000
32 ID2_2001 ID2_2001 0.77099402
33 ID3_2001 ID3_2001 0.76921180
34 ID1_2000 ID1_2000 1.00000000
35 ID2_2000 ID2_2000 0.05728332
36 ID3_2000 ID3_2000 0.00000000
РЕДАКТИРОВАТЬ 4:
x <- data.matrix(dist.matrix)
x <- as.data.frame(x)
library(tibble)
library(tidyr)
y <- x %>%
rownames_to_column("row") %>%
separate(row, c("id_row", "year_row"), "_")
z <- melt(y)
z
w <- z %>%
separate(variable, c("id_col", "year_col"), "_")
w
Что, кажется, дает
> head(w)
id_row year_row id_col year_col value
1 ID1 2001 ID1 2001 0.00000000
2 ID2 2001 ID1 2001 0.97192896
3 ID3 2001 ID1 2001 0.97288923
4 ID1 2000 ID1 2001 0.01505221
5 ID2 2000 ID1 2001 1.00000000
6 ID3 2000 ID1 2001 1.00000000