Я не могу использовать многопроцессорную обработку с моделью Tensorflow. Модель SciKit-Learn отлично работает.
Я создал детектор объекта со скользящим окном. Этот детектор сканирует изображение справа налево, сверху вниз и извлекает подокна. Каждое подокно оценивается, чтобы увидеть, содержит ли оно изученный объект.
Функции извлекаются из подокнов. Я изменяю свой код, который использует экстрактор функций HOG, и заменяю его обученной моделью VGG16 с обрезанным верхом. Прогнозирование производится с использованием SVM. Метод скользящего окна медленный, но его можно значительно ускорить, если прогнозы делаются параллельно. Я смог сделать это с помощью модели обучения SciKit (SVM) без проблем с использованием многопоточности. Однако когда я добавляю модель Tensorflow, я получаю сообщение об ошибке:
TypeError: can't pickle SwigPyObject objects
Я создал класс, который принимает модель в качестве параметра. Минимальный пример приведен ниже. Работает когда TF_model=[]
.
Вот минимальный пример проблемы
from multiprocessing import Process,Queue,Pool,Manager
class ObjectDetectorMinimal:
def __init__(self, SKLearnModel, TF_model):
# Note: in this minimal example, these models are not used
self.SKLmodel = SKLearnModel
self.TFmodel = TF_model
def f1(self): # Use multiple threads
# Uses multithreading instead of multiprocessing.
p = Pool()
print("Starting the Parallel Processing across multiple threads")
output1=[]
output2=[]
myArgs=[]
xx = range(0,5)
yy = range(20,25)
for i in range(0,len(xx)-1):
myArgs.append([xx[i],yy[i]])
print("MyArgs: {}".format(myArgs))
print("Starting p.map()")
pp=list(p.map(self.f2,myArgs)) # p.mat does not require a Queue to be defined.
for ppp in pp:
output1 = output1 + ppp[0]
output2 = output2 + ppp[1]
p.close()
p.join()
print("Finished f1()")
return(output1,output2)
def f2(self,myArgs):
output1=[]
output2 =[]
xx=myArgs[0]
yy=myArgs[1]
#print("xx: {} yy {} ".format(xx,yy))
b,p = self.f3(xx,yy)
if len(b)>0: # Check for empty
#print("b: {} p {}".format(b,p))
output1 = output1 + b
output2 = output2 + p
return(output1,output2)
else:
print("b is empty")
def f3(self,x,y):
self.processID = os.getpid()
output1=[]
output2=[]
output1.append([x ,2*x, 3*x])
output2.append([y, 2*y, 3*y])
return(output1,output2)
SKLmodel = svm.SVC(gamma='scale')
TF_model=VGG16(weights="imagenet", include_top=False)
od = ObjectDetectorMinimal(SKLmodel,TF_model)
#od = ObjectDetectorMinimal(model,[])
output1,output2=od.f1()
print("\nOutput1: {} \n \nOutput2: {}".format(output1,output2))
Выход для od = ObjectDetectorMinimal(model,[])
:
Starting the Parallel Processing across multiple threads
MyArgs: [[0, 20], [1, 21], [2, 22], [3, 23]]
Starting p.map()
Finished f1()
Output1: [[0, 0, 0], [1, 2, 3], [2, 4, 6], [3, 6, 9]]
Output2: [[20, 40, 60], [21, 42, 63], [22, 44, 66], [23, 46, 69]]`
Если я включу модель Tensorflow, я получу:
Starting the Parallel Processing across multiple threads
MyArgs: [[0, 20], [1, 21], [2, 22], [3, 23]]
Starting p.map()
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-110-a2b46430a3c6> in <module>
3 od = ObjectDetectorMinimal(model,featureextraction_model)
4 #od = ObjectDetectorMinimal(model,[])
----> 5 output1,output2=od.f1()
6 print("\nOutput1: {} \n \nOutput2: {}".format(output1,output2))
<ipython-input-106-d7922b5e2ae3> in f1(self)
18
19 print("Starting p.map()")
---> 20 pp=list(p.map(self.f2,myArgs)) # p.mat does not require a Queue to be defined.
21 for ppp in pp:
22 output1 = output1 + ppp[0]
/usr/lib/python3.5/multiprocessing/pool.py in map(self, func, iterable, chunksize)
258 in a list that is returned.
259 '''
--> 260 return self._map_async(func, iterable, mapstar, chunksize).get()
261
262 def starmap(self, func, iterable, chunksize=None):
/usr/lib/python3.5/multiprocessing/pool.py in get(self, timeout)
606 return self._value
607 else:
--> 608 raise self._value
609
610 def _set(self, i, obj):
/usr/lib/python3.5/multiprocessing/pool.py in _handle_tasks(taskqueue, put, outqueue, pool, cache)
383 break
384 try:
--> 385 put(task)
386 except Exception as e:
387 job, ind = task[:2]
/usr/lib/python3.5/multiprocessing/connection.py in send(self, obj)
204 self._check_closed()
205 self._check_writable()
--> 206 self._send_bytes(ForkingPickler.dumps(obj))
207
208 def recv_bytes(self, maxlength=None):
/usr/lib/python3.5/multiprocessing/reduction.py in dumps(cls, obj, protocol)
48 def dumps(cls, obj, protocol=None):
49 buf = io.BytesIO()
---> 50 cls(buf, protocol).dump(obj)
51 return buf.getbuffer()
52
`TypeError: can't pickle SwigPyObject objects`
Я ожидаю использовать модель Tensorflow так же, как и модель обучения SciKit при использовании модуля многопроцессорной обработки