Я пытался оптимизировать гиперпараметры в моих кератах, созданных CNN для классификации изображений. Я решил использовать поиск по сетке от sklearn. Я преодолел фундаментальные трудности с созданием x и y из keras flow_from_directory, но он все еще не работает.
Ошибка в последней строке
ValueError: dropout is not a legal parameter
def grid_model(optimizer='adam',
kernel_initializer='random_uniform',
dropout=0.2,
loss='categorical_crossentropy'):
model = Sequential()
model.add(Conv2D(6,(5,5),activation="relu",padding="same",
input_shape=(img_width, img_height, 3)))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(dropout))
model.add(Conv2D(16,(5,5),activation="relu"))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(dropout))
model.add(Flatten())
model.add(Dense(120, activation='relu', kernel_initializer=kernel_initializer))
model.add(Dropout(dropout))
model.add(Dense(84, activation='relu', kernel_initializer=kernel_initializer))
model.add(Dropout(dropout))
model.add(Dense(10, activation='softmax'))
model.compile(loss=loss,
optimizer=optimizer,
metrics=['accuracy'])
return model
train_generator = ImageDataGenerator(rescale=1/255)
validation_generator = ImageDataGenerator(rescale=1/255)
# Retrieve images and their classes for train and validation sets
train_flow = train_generator.flow_from_directory(directory=train_data_dir,
batch_size=batch_size,
target_size=(img_height,img_width))
validation_flow = validation_generator.flow_from_directory(directory=validation_data_dir,
batch_size=batch_size,
target_size=(img_height,img_width),
shuffle = False)
clf = KerasClassifier(build_fn=grid_model(), epochs=epochs, verbose=0)
param_grid = {
'clf__optimizer':['adam', 'Nadam'],
'clf__epochs':[100, 200],
'clf__dropout':[0.1, 0.2, 0.5],
'clf__kernel_initializer':['normal','uniform'],
'clf__loss':['categorical_crossentropy',
'sparse_categorical_crossentropy',
'kullback_leibler_divergence']
}
pipeline = Pipeline([('clf',clf)])
(X_train, Y_train) = train_flow.next()
grid = GridSearchCV(pipeline, cv=2, param_grid=param_grid)
grid.fit(X_train, Y_train)