(отправка ответа через день после публикации вопроса)
Мне удалось решить эту проблему путем преобразования таблиц в кадр данных pandas.
from pyspark.sql.types import *
schema = StructType([StructField("id", StringType())\
,StructField("day", StringType())\
,StructField("1", IntegerType())\
,StructField("2", IntegerType())\
,StructField("3", IntegerType())\
,StructField("4", IntegerType())])
# Day field is String type
data = [['A', 1, 20, 10, 50, 30], ['B', 1, 0, 50, 0, 50], ['C', 2, 50, 10, 10, 30], ['D', 4, 10, 25, 25, 40]]
df = spark.createDataFrame(data,schema=schema)
df.show()
# After joining the 2 tables on "id", the tables would look like this:
+---+---+---+---+---+---+
| id|day| 1| 2| 3| 4|
+---+---+---+---+---+---+
| A| 1| 20| 10| 50| 30|
| B| 1| 0| 50| 0| 50|
| C| 2| 50| 10| 10| 30|
| D| 4| 10| 25| 25| 40|
+---+---+---+---+---+---+
# Converting to a pandas dataframe
pandas_df = df.toPandas()
id day 1 2 3 4
A 1 20 10 50 30
B 1 0 50 0 50
C 2 50 10 10 30
D 4 10 25 25 40
# UDF:
def udf(x):
return x[x['day']]
pandas_df['percent'] = pandas_df.apply(udf, axis=1)
# Converting back to a Spark DF:
spark_df = sqlContext.createDataFrame(pandas_df)
+---+---+---+---+---+---+---+
| id|day| 1| 2| 3| 4|new|
+---+---+---+---+---+---+---+
| A| 1| 20| 10| 50| 30| 20|
| B| 1| 0| 50| 0| 50| 0|
| C| 2| 50| 10| 10| 30| 10|
| D| 4| 10| 25| 25| 40| 40|
+---+---+---+---+---+---+---+
spark_df.select("id", "day", "percent").show()
+---+---+-------+
| id|day|percent|
+---+---+-------+
| A| 1| 20|
| B| 1| 0|
| C| 2| 10|
| D| 4| 40|
+---+---+-------+
Буду признателен, если кто-нибудь отправит ответ в PySpark без преобразования pandas-df.