Вот общий векторизованный способ охвата как одномерных, так и двумерных случаев, используя broadcasting
после преобразования входного массива в транслируемые shpaes друг против друга -
def permute_axes_subtract(arr, axis):
# Get array shape
s = arr.shape
# Get broadcastable shapes by introducing singleton dimensions
s1 = np.insert(s,axis,1)
s2 = np.insert(s,axis+1,1)
# Perform subtraction after reshaping input array to
# broadcastable ones against each other
return arr.reshape(s1) - arr.reshape(s2)
Для выполнения любых другихпоэлементно ufunc
операция, просто замените на нее операцию вычитания.
Пример выполнения -
In [184]: arr = np.random.rand(3)
In [185]: permute_axes_subtract(arr, axis=0).shape
Out[185]: (3, 3)
In [186]: arr = np.random.rand(3,4)
In [187]: permute_axes_subtract(arr, axis=0).shape
Out[187]: (3, 3, 4)
In [188]: permute_axes_subtract(arr, axis=1).shape
Out[188]: (3, 4, 4)
Временные параметры @ Опубликованное решение ClimbingTheCurve func - permute_difference
и тот, который размещен в этом на больших 2D
массивах -
In [189]: arr = np.random.rand(100,100)
In [190]: %timeit permute_difference(arr, axis=0)
...: %timeit permute_axes_subtract(arr, axis=0)
1 loop, best of 3: 295 ms per loop
1000 loops, best of 3: 1.17 ms per loop
In [191]: %timeit permute_difference(arr, axis=1)
...: %timeit permute_axes_subtract(arr, axis=1)
1 loop, best of 3: 303 ms per loop
1000 loops, best of 3: 1.12 ms per loop