Я пытался выполнить код CNET UNET, но я получаю ту же ошибку: FailedPreconditionError: Попытка использовать неинициализированное значение lambda / Variable
Проблема возникает, когда я вызываюfonction:
model.fit (x_train, y_train, batch_size = 16, epochs = 1000, shuffle = True, validation_data = [x_val, y_val])
Я уже пытался инициализировать переменные с помощью:tf.global_variables_initializer (), но проблема сохраняется
Моя версия tenorflow-gpu: '1.13.1'
Моя версия на python: '3.7.3'
Графическая карта:Titan RTX
def U_Net(activation='relu', ft_root=64, batch_norm=True):
inputs = Input((None, None, None, 1))
x = inputs
# Dictionary for long connections
var_dict = {}
# Down sampling
for i in range(self.n_layers):
out_channel= 2**i * ft_root
# Convolutions
conv1 = Conv3D(out_channel, kernel_size=3, padding='same')(x)
if batch_norm:
conv1 = BatchNormalization()(conv1)
act1 = Activation(activation)(conv1)
conv2 = Conv3D(out_channel, kernel_size=3, padding='same')(act1) # deuxieme couche de convolution
if batch_norm:
conv2 = BatchNormalization()(conv2)
act2 = Activation(activation)(conv2)
# Max pooling
if i < self.n_layers - 1:
var_dict[str(i)] = act2
x = MaxPooling3D(padding='same')(act2)
else:
x = act2
# Upsampling
for i in range(self.n_layers-2, -1, -1):
out_channel = 2**(i)*ft_root
# Convolution transposed
upconv = Conv3DTranspose(out_channel, kernel_size=2, strides=2, use_bias=False)(x) # upsampling
upconv_ = Lambda(CroppingLayer)([upconv, var_dict[str(i)]])
uplong = Add()([upconv_, var_dict[str(i)]]) # skip connection
# Convolutions
conv1 = Conv3D(out_channel, kernel_size=3, padding='same')(uplong)
if batch_norm:
conv1 = BatchNormalization()(conv1)
act1 = Activation(activation)(conv1)
conv2 = Conv3D(out_channel, kernel_size=3, padding='same')(act1)
if batch_norm:
conv2 = BatchNormalization()(conv2)
x = Activation(activation)(conv2)
# Final convolution
output = Conv3D(1, kernel_size=1, padding='same', activation='sigmoid')(x)
return Model(inputs, output, name='U-Net')
def dice_loss(labels, logits):
eps = 1e-5
pred = K.flatten(logits)
lab = K.flatten(labels)
intersection = K.sum(pred*lab)
dice_0 = (2*intersection + eps) / (K.sum(pred) + K.sum(lab) + eps)
return 1 - dice_0
tf.global_variables_initializer()
model.fit(x_train, y_train, batch_size=16, epochs=1000, shuffle=True, validation_data=[x_val, y_val])
Я ожидал, что тренировка начнется;но вместо этого точный вывод:
Файл "/home/derf/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/errors_impl.py", строка 528, в exit c_api.TF_GetCode (self.status.status)) FailedPreconditionError: Попытка использовать неинициализированное значение lambda / Variable [[{{{node lambda / Variable / read}}]] [[{{{потеря потерь / муль}}]]