Рекомендуемый способ подмножества двух векторов с одинаковым индексным вектором - PullRequest
3 голосов
/ 25 июня 2019

Я ищу эффективный способ подмножества двух векторов с одинаковым индексным вектором. Эффективные категории могут быть:

  • Опечатка сохранение
  • Потребление памяти
  • читаемость
  • Время вычислений

Предположим, у меня есть два вектора x и y

x <- 1:10
y <- 10:1

и я хочу перезаписать значения x значениями y, когда x меньше y. Я могу сделать это с (1):

x[x < y] <- y[x < y]

Но здесь я должен написать x < y дважды, что имеет недостатки при опечатке, и когда я делаю обновление, я могу забыть сделать это с обеих сторон. Так что я могу создать индексный вектор (2):

idx <- x < y
x[idx] <- y[idx]
rm(idx)

Но здесь я создаю дополнительный вектор, который может потребовать памяти и времени. Я также могу использовать for-loop (3):

for(i in seq_along(x)) {
   if(x[i] < y[i]) x[i] <- y[i]
}

Это может быть медленно, и я не знаю, выделяет ли seq_along(x) память или нет. Я могу использовать delayedAssign в такой среде, как (4):

(function() {
  delayedAssign("idx", x < y)
  x[idx] <<- y[idx]
})()

или (5):

evalq({
  delayedAssign("idx", x < y)
  x[idx] <<- y[idx]}, envir = new.env(), enclos = parent.frame())

где я надеюсь, что delayedAssign не создает вектор idx в памяти. В base уже есть несколько других возможностей, таких как:

x <- ifelse(x < y, y, x) #(6)
x <- sapply(seq_along(x), function(i) {if(x[i] < y[i]) y[i] else x[i]}) #(7)
with(data.frame(idx = x < y), x[idx] <<- y[idx]) #(8)

x < y можно заменить на which(x < y), что может уменьшить размер вектора и улучшить время выполнения .

В конце концов, я не удовлетворен всеми этими методами.

Есть ли рекомендуемый способ подстановки двух векторов одним индексным вектором? Для меня Typo-save и Потребление памяти важнее Время выполнения .

Есть ли способ увидеть Потребление памяти различных методов во время выполнения, например, используя microbenchmark, чтобы увидеть время выполнения, или это можно сделать только путем создания огромных векторов и просмотра системные процессы?

Ответы [ 4 ]

6 голосов
/ 25 июня 2019

[…] Но здесь я создаю дополнительный вектор

Нет, это не так.На самом деле вы создаете на один вектор меньше, чем в предыдущем коде, потому что вы вычисляете x < y только один раз вместо двух.

Кстати, я бы увидел любое явное использование rm в коде какзапах кода.Вместо этого ограничьте область вычислений, чтобы переменная idx была недолгой.Чтобы сделать это явным образом, вы можете использовать local 1 :

x = local({
    idx = x < y
    x[idx] = y[idx]
})

(Но, как показано, для этого потребуется переназначение на x, что влечет за собой еще одну копию, которая Rвряд ли удастся оптимизировать, альтернатива будет использовать глобальное переназначение через <<- или assign внутри вызова local.)

[…] где я надеюсь, что delayedAssign делаетне создавать idx вектор в памяти

Опять же, что заставляет вас так думать? Конечно, это создает вектор в памяти - в конце концов, вы впоследствии используете его.Вы можете подумать, что вычисления выполняются лениво, но хотя R недавно приобрел эту функцию с помощью ALTREP , существует очень немного ситуаций, когда такие выражения создаются автоматически, и они здесь не актуальны.

1 Использование evalq аналогично, только более запутанно.local - это удобная оболочка вокруг eval.parent(quote(…)).

1 голос
/ 25 июня 2019

Если вы определяете функции назначений, такие как приведенные ниже (улучшено с этот вопрос , и извините, я не могу предложить упакованную версию)

`<<-` <- function(e1, e2, value){
  if(missing(value)) 
    eval.parent(substitute(.Primitive("<<-")(e1, e2)))
  else {
    cond <- e1 < e2
    if(any(cond)) 
      replace(e1, cond, value)
    else e1
  }
}

Вы можете сделатьx < y <- y[x <y] вместо x[x < y] <- y[x <y]

Теперь, если поверх него вы используете dotdot , который заменяет .. в правой части на lhs, вы можете сделать следующее:

library(dotdot)
x <- 1:10
y <- 10:1
x < y := y[..]
x
# [1] 10  9  8  7  6  6  7  8  9 10

Не уверен, насколько это читабельно, я бы обычно использовал модифицированный <<- для таких вещей, как x < 0 <- NA и dotdot с простыми lhs, но это, вероятно, самый компактный, который вы можете получить!

Обратите внимание, что x < y все равно будет оцениваться здесь дважды, так как точка не была закодирована с учетом этого странного случая:).

1 голос
/ 25 июня 2019

Я хотел бы представить этот тест, по крайней мере, для скорости. Я надеюсь, что все в порядке и что это приносит пользу.

Benchmark

# Unit: milliseconds
# expr       min          lq       mean      median          uq        max neval cld
# M1    669.5364    772.9185   2360.234   2285.9725   2691.0597   6748.697    10  a 
# M2    460.5103    540.4875   1477.873    710.7905   2112.8210   4538.728    10  a 
# M2a   776.5886   1879.7114   3596.316   2482.3449   3514.3662  10049.601    10  a 
# M3   7530.8926   7556.8909   7589.172   7587.4924   7619.6962   7668.825    10  a 
# M4    442.4082    545.2067   1671.283    641.0817   2232.8275   6821.164    10  a 
# M5    572.0651    603.7959   1536.910    783.5842   1681.0030   6199.584    10  a 
# M6   2045.0549   2222.2072   5613.928   3949.3604   7877.2988  14514.625    10  a 
# M7 143646.6301 156567.2780 165822.856 165018.5859 166944.0531 221897.671    10   b
# M8    446.6539    552.2921   1044.842    827.3231   1766.1650   2168.388    10  a 
# M9    388.7266    406.7127    684.946    529.0503    554.9486   2093.648    10  a 

код

set.seed(42)
n <- 1e8
x <- sample(1:9, n, replace=TRUE)
y <- sample(1:9, n, replace=TRUE)

library(microbenchmark)
microbenchmark(M1=x[x < y] <- y[x < y],
               M2={
                 idx <- x < y
                 x[idx] <- y[idx]
               },
               M2a=local({
                 idx=x < y
                 x[idx]=y[idx]
               }),
               M3=for(i in seq_along(x)) {
                 if(x[i] < y[i]) x[i] <- y[i]
               },
               M4={
                 (function() {
                   delayedAssign("idx", x < y)
                   x[idx] <<- y[idx]
                 })()
               },
               M5=evalq({
                 delayedAssign("idx", x < y)
                 x[idx] <<- y[idx]}, envir=new.env(), enclos=parent.frame()),
               M6=ifelse(x < y, y, x),
               M7=sapply(seq_along(x), function(i) {
                 if(x[i] < y[i]) y[i] else x[i]
                 }),
               M8=with(data.frame(idx=x < y), x[idx] <<- y[idx]),
               M9=pmax(x, y),  # off topic
               times=5L)
0 голосов
/ 26 июня 2019

В настоящее время похоже, что использование

idx <- which(x < y)
x[idx] <- y[idx]
rm(idx)

может быть рекомендовано для подстановки двух векторов с одинаковым индексным вектором.

В случае, если вы используете с одной стороны позицию, а с другойсбоку значение, как в обновлении соединения ,

idx <- match(x, y)
idxn <- which(!is.na(idx))
x[idxn] <- -y[idx[idxn]]
rm(idx, idxn)

может быть рекомендовано.

Подробности:

library(microbenchmark)

fun <- alist(m1 = x[x < y] <- y[x < y]
           , m1w = x[which(x < y)] <- y[which(x < y)]
           , m2 = {idx <- x < y; x[idx] <- y[idx]; rm(idx)}
           , m2w = {idx <- which(x < y); x[idx] <- y[idx]; rm(idx)}
           , m2wl = {local({idx <- which(x < y); x[idx] <<- y[idx]})}
           , m3 = {for(i in seq_along(x)) {if(x[i] < y[i]) x[i] <- y[i]}}
           , m3w = {for(idx in which(x < y)) {x[idx] <- y[idx]}}
           , m3wl = {local(for(idx in which(x < y)) {x[idx] <<- y[idx]})}
           , m4 = {(function() {delayedAssign("idx", x < y); x[idx] <<- y[idx]})()}
           , m4w = {(function() {delayedAssign("idx", which(x < y)); x[idx]<<- y[idx]})()}
           , m5 = {evalq({delayedAssign("idx", x < y); x[idx] <<- y[idx]}, envir = new.env(), enclos = parent.frame())}
           , m5w = {evalq({delayedAssign("idx", which(x < y)); x[idx] <<- y[idx]}, envir = new.env(), enclos = parent.frame())}
           , m6 = x <- ifelse(x < y, y, x)
           , m7 = x <- sapply(seq_along(x), function(i) {if(x[i] < y[i]) y[i] else x[i]})
           , m8 = with(data.frame(idx = x < y), x[idx] <<- y[idx])
           , m8w = with(data.frame(idx = which(x < y)), x[idx] <<- y[idx])
           , m9 = x <- pmax(x, y)
          )

memUse <- function(list, setup = "", gctort = FALSE) {
  as.data.frame(lapply(list, function(z) {
    eval(setup)
    tt <- sum(.Internal(gc(FALSE, TRUE, TRUE))[13:14])
    gctorture(on = gctort)
    eval(z)
    gctorture(on = FALSE)
    sum(.Internal(gc(FALSE, FALSE, TRUE))[13:14]) - tt
  }))
}

n <- 1e6L #On my pc m7 takes very long with longer vectors

#50% repacement
xC <- rep_len(0:9, n)
x <- xC
y <- rep_len(9:0, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr        min          lq        mean      median          uq        max neval
#   m1   9.362981    9.941294   30.185996   12.315266   23.531700  141.28603    20
#  m1w  10.029621   10.971671   17.328038   12.256211   17.934435   81.65052    20
#   m2   7.177270    7.368008   11.875662    9.524422   12.633254   37.91534    20
#  m2w   7.083238    7.844280   11.196914    8.550595   14.602815   22.86438    20
# m2wl   7.050052    7.258657   10.318978    7.923862    9.745804   25.74206    20
#   m3 109.944807  110.882601  114.673555  111.885780  117.075936  129.19246    20
#  m3w  35.628572   36.300217   46.996217   37.574246   40.024844  116.80551    20
# m3wl 363.532255  373.069300  431.522826  395.528996  456.413863  597.30239    20
#   m4   7.116324    8.001434   11.823148    9.022419   13.660199   27.59086    20
#  m4w   6.963074    7.048622   13.242077    8.084297   11.645519   78.60026    20
#   m5   7.067611    7.327816   16.069991    9.284865   15.416912  115.43513    20
#  m5w   7.034584    8.382096   16.781882    9.726437   16.823329  108.70100    20
#   m6  17.651948   18.796132   26.044715   19.585389   27.150359   95.99133    20
#   m7 933.336461 1028.588463 1082.014782 1077.447541 1142.779436 1203.75604    20
#   m8   7.304279    7.613715   12.683940    9.259327   16.367387   46.73193    20
#  m8w   7.306591    7.446765   13.722586    8.317214   13.281609   83.86340    20
#   m9   3.404972    3.541755    3.796737    3.685642    4.012589    4.54105    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#    m1  m1w m2  m2w m2wl   m3 m3w m3wl m4  m4w m5  m5w   m6    m7   m8  m8w  m9
#1 24.8 24.8 21 15.2 15.2 59.2  68   68 21 15.2 21 15.2 34.3 106.1 21.1 15.3 3.8

#100% repacement
xC <- rep_len(0, n)
x <- xC
y <- rep_len(1, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr        min         lq        mean      median          uq         max neval
#   m1  13.648232   14.82093   28.621411   15.936936   26.199469   99.553175    20
#  m1w  15.920691   16.54614   23.413209   17.117911   19.579158  113.066464    20
#   m2  11.551213   11.89491   20.940656   13.153880   22.355784   94.305937    20
#  m2w  12.313997   12.47287   19.400817   13.687655   20.209957   89.129126    20
# m2wl  12.276096   12.42314   14.322066   13.107012   14.680684   21.261685    20
#   m3 137.168517  139.28248  143.018082  140.939792  144.204528  165.616204    20
#  m3w  66.463903   66.66168   69.924619   67.901559   71.515786   79.278128    20
# m3wl 690.311636  703.53159  748.621164  718.447933  748.375469  970.204829    20
#   m4  11.441186   11.74227   17.736055   12.714788   16.740723   80.710164    20
#  m4w  12.286395   12.40667   14.305248   12.501939   13.737790   31.441008    20
#   m5  11.473874   11.53943   17.929906   11.960568   13.638548   83.077290    20
#  m5w  12.278804   12.38792   19.689197   13.446629   18.157106  100.649735    20
#   m6  18.118748   19.03396   29.584077   19.753099   26.499255   99.333902    20
#   m7 847.875768 1032.68963 1071.521727 1072.907583 1151.036749 1249.079078    20
#   m8  12.020599   12.77211   14.821545   13.188046   14.576952   24.397931    20
#  m8w  12.551370   12.63402   19.263936   12.859222   17.794158   86.014839    20
#   m9   3.393315    3.61704    4.039384    3.711276    4.456398    5.489078    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#    m1  m1w   m2  m2w m2wl   m3  m3w m3wl   m4  m4w   m5  m5w m6    m7   m8  m8w  m9
#1 38.2 38.2 34.3 26.7 26.7 61.6 72.6 72.6 34.3 26.7 34.3 26.7 42 108.2 34.5 26.8 7.6

#0% repacement
xC <- rep_len(1, n)
x <- xC
y <- rep_len(0, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr        min          lq        mean      median          uq         max neval
#   m1   6.589096    6.664210    9.885122    6.684262   13.775726   21.878444    20
#  m1w   6.842137    6.904734   14.664578    6.947293   13.320292  109.027443    20
#   m2   3.401598    3.413235    4.953130    3.438164    3.963643   14.268839    20
#  m2w   3.005197    3.017770    3.094672    3.042470    3.074060    4.049775    20
# m2wl   3.981523    4.005924    9.785378    4.021979    4.156620   92.515420    20
#   m3  80.912504   81.154859   81.901925   81.631556   82.670752   84.190109    20
#  m3w   5.377001    5.416671    7.138954    5.483028    6.511429   16.243317    20
# m3wl   2.919146    2.947492    4.005262    2.964488    2.981436   12.981625    20
#   m4   4.453434    4.485750    5.874224    4.536671    5.562121   13.933019    20
#  m4w   3.991118    4.008097    6.597674    4.028864    4.635915   22.966413    20
#   m5   4.461602    4.494989    7.666011    4.511920    9.758226   24.383190    20
#  m5w   3.959898    4.002523    7.709664    4.050941    4.173436   53.543674    20
#   m6  17.661630   17.791470   23.846625   19.567245   28.225758   38.622220    20
#   m7 933.661883 1033.959171 1077.598475 1096.121598 1136.886472 1175.809700    20
#   m8   4.719020    4.745232    9.919018    4.781921    6.507246   75.527422    20
#  m8w   4.239784    4.271047    9.102203    4.299095    7.165185   57.379780    20
#   m9   3.366839    3.452929    4.988191    3.481065    3.564584   19.815845    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#    m1  m1w   m2 m2w m2wl   m3 m3w m3wl   m4  m4w   m5  m5w m6    m7   m8  m8w  m9
#1 22.9 22.9 11.5 7.6 15.3 44.9 7.6  7.6 19.1 15.3 19.1 15.3 42 128.4 19.2 15.4 7.6


#With a more complex condition than x < y
fun <- alist(m1 = x[tan(x) < tan(y)] <- y[tan(x) < tan(y)]
     , m1w = x[which(tan(x) < tan(y))] <- y[which(tan(x) < tan(y))]
     , m2 = {idx <- tan(x) < tan(y); x[idx] <- y[idx]; rm(idx)}
     , m2w = {idx <- which(tan(x) < tan(y)); x[idx] <- y[idx]; rm(idx)}
     , m2wl = {local({idx <- which(tan(x) < tan(y)); x[idx] <<- y[idx]})}
     , m3 = {for(i in seq_along(x)) {if(tan(x[i]) < tan(y[i])) x[i] <- y[i]}}
     , m3w = {for(idx in which(tan(x) < tan(y))) {x[idx] <- y[idx]}}
     , m3wl = {local(for(idx in which(tan(x) < tan(y))) {x[idx] <<- y[idx]})}
     , m4 = {(function() {delayedAssign("idx", tan(x) < tan(y)); x[idx] <<- y[idx]})()}
     , m4w = {(function() {delayedAssign("idx", which(tan(x) < tan(y))); x[idx] <<- y[idx]})()}
     , m5 = {evalq({delayedAssign("idx", tan(x) < tan(y)); x[idx] <<- y[idx]}, envir = new.env(), enclos = parent.frame())}
     , m5w = {evalq({delayedAssign("idx", which(tan(x) < tan(y))); x[idx] <<- y[idx]}, envir = new.env(), enclos = parent.frame())}
     , m6 = x <- ifelse(tan(x) < tan(y), y, x)
     , m7 = x <- sapply(seq_along(x), function(i) {if(tan(x[i]) < tan(y[i])) y[i] else x[i]})
     , m8 = with(data.frame(idx = tan(x) < tan(y)), x[idx] <<- y[idx])
     , m8w = with(data.frame(idx = which(tan(x) < tan(y))), x[idx] <<- y[idx])
)

#50% repacement
xC <- rep_len(0:9, n)
x <- xC
y <- rep_len(9:0, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr        min         lq       mean     median         uq        max neval
#   m1  150.53809  151.25090  164.24548  152.94124  170.73427  223.97944    20
#  m1w  150.56266  151.84806  161.74585  153.18321  160.00592  223.86287    20
#   m2   76.88262   78.13652   85.72190   82.40141   87.19680  150.77076    20
#  m2w   76.53983   77.40472   87.74890   77.94618   82.32798  156.58522    20
# m2wl   76.93366   77.58086   82.68244   78.15460   82.18667  107.52469    20
#   m3  232.22004  232.99509  237.67218  234.10627  235.14893  304.04201    20
#  m3w  105.59221  105.86459  110.04552  106.89158  111.67208  133.75261    20
# m3wl  435.25394  446.68204  487.41579  453.01685  521.65402  705.62717    20
#   m4   77.32980   77.89973   84.78399   79.00021   79.94984  160.29572    20
#  m4w   76.99555   77.94441   81.50439   78.60553   85.55179   96.93830    20
#   m5   76.66992   77.33471   89.60525   79.20687   86.08836  172.16646    20
#  m5w   76.37683   77.05510   82.85917   77.53271   82.16778  144.24078    20
#   m6   87.37572   88.45537   98.99907   89.02368   96.81267  165.25716    20
#   m7 1027.99068 1150.86229 1199.66760 1201.45385 1239.21803 1315.94626    20
#   m8   76.86455   77.93917   79.76095   78.96807   79.60475   89.65809    20
#  m8w   78.69934   79.13237   83.26944   80.81390   87.51346  101.49319    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#    m1  m1w   m2  m2w m2wl   m3  m3w m3wl   m4  m4w   m5  m5w   m6    m7   m8  m8w
#1 55.3 55.3 36.2 30.5 30.5 55.9 79.5 79.5 36.2 30.5 36.2 30.5 49.6 133.9 36.3 30.6

#100% repacement
xC <- rep_len(0, n)
x <- xC
y <- rep_len(1, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr       min         lq       mean     median         uq        max neval
#   m1  72.50779   73.85809   81.62600   75.17883   83.09049  143.10837    20
#  m1w  74.33753   75.62555   81.39149   77.06395   85.34476  105.24806    20
#   m2  40.73727   41.48906   52.22463   42.93811   50.68852  119.13366    20
#  m2w  41.43466   41.72756   50.53189   44.94449   52.37125  121.17726    20
# m2wl  41.60436   42.25114   49.84177   43.86556   50.83141  127.52145    20
#   m3 214.33331  215.56117  223.15401  216.54753  221.73404  304.96538    20
#  m3w  96.23799   96.71452   98.80659   97.73016   99.23308  106.56888    20
# m3wl 716.11847  736.26573  839.67672  775.01016  932.43366 1054.35836    20
#   m4  40.75406   41.78469   45.13181   42.54718   49.61718   56.45373    20
#  m4w  41.51614   41.79747   50.39626   43.04746   53.30470  112.03821    20
#   m5  40.69414   41.41407   46.72030   42.44355   50.06923   72.67644    20
#  m5w  41.53582   41.62817   48.23472   42.68742   50.58984  110.01377    20
#   m6  47.13042   48.38094   58.69262   53.26532   59.43038  143.99039    20
#   m7 992.82221 1102.50031 1139.33831 1137.81362 1161.28651 1277.99506    20
#   m8  40.92674   42.25611   47.05092   46.78702   50.60716   58.58826    20
#  m8w  42.59176   43.02294   53.50535   47.65410   53.70309  120.47093    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#    m1  m1w   m2 m2w m2wl   m3  m3w m3wl   m4 m4w   m5 m5w   m6    m7   m8  m8w
#1 53.4 53.4 49.6  42   42 64.6 90.9 90.9 49.6  42 49.6  42 49.6 111.8 49.7 42.1

#0% repacement
xC <- rep_len(1, n)
x <- xC
y <- rep_len(0, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr        min         lq       mean     median         uq        max neval
#   m1   64.13278   65.17428   76.80236   72.93639   74.11106  139.21633    20
#  m1w   64.20926   64.36072   68.26227   65.65780   73.27032   81.91496    20
#   m2   32.55641   32.73825   40.57034   33.73059   42.21539  106.96577    20
#  m2w   32.08899   32.17692   37.02755   32.42990   33.41896  104.51287    20
# m2wl   33.21636   33.30782   40.70415   34.41295   42.56047   90.67323    20
#   m3  143.45435  144.07389  145.11642  144.96065  145.85825  147.79313    20
#  m3w   35.12864   35.40720   37.85706   35.58504   40.38525   44.57139    20
# m3wl   32.11977   32.22333   37.60191   32.42593   37.28842   97.82210    20
#   m4   33.59010   33.79237   42.43258   34.75375   42.61118  140.07139    20
#  m4w   33.18575   33.38007   40.68604   33.50068   42.04799  111.38275    20
#   m5   33.69306   34.00844   36.43207   34.82090   36.07427   46.25004    20
#  m5w   33.18643   33.28609   39.02025   34.24648   42.53507   71.25813    20
#   m6   46.95918   47.91826   57.68163   55.85067   56.73664  139.46774    20
#   m7 1012.54640 1101.79435 1136.96233 1143.16804 1169.20692 1315.41621    20
#   m8   33.92067   34.15995   39.46636   35.18619   43.15650   57.13766    20
#  m8w   34.33384   34.49190   38.55053   35.13948   43.33685   57.35593    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#    m1  m1w   m2  m2w m2wl   m3  m3w m3wl   m4  m4w   m5  m5w   m6    m7   m8  m8w
#1 45.8 45.8 26.7 22.9 30.5 56.2 22.9 22.9 34.3 30.5 34.3 30.5 49.6 110.3 34.5 30.6

#update join
n <- 1e5L

fun <- alist(m1 = x[!is.na(match(x, y))] <- -y[match(x, y)[!is.na(match(x, y))]]
             , m1b = x[!is.na(match(x, y))] <- -y[na.omit(match(x, y))]
             , m2 = {idx <- match(x, y); x[!is.na(idx)] <- -y[idx[!is.na(idx)]]; rm(idx)}
             , m2b = {idx <- match(x, y); x[!is.na(idx)] <- -y[na.omit(idx)]; rm(idx)}
             , m2c = {idx <- match(x, y); idxn <- !is.na(idx); x[idxn] <- -y[idx[idxn]]; rm(idx, idxn)}
             , m2d = {idx <- match(x, y); idxn <- which(!is.na(idx)); x[idxn] <- -y[idx[idxn]]; rm(idx, idxn)}

             , m3 = {for(i in seq_along(x)) {idx <- match(x[i], y); if(!is.na(idx)) {x[i] <- -y[idx]}}}
             )

#50% repacement
xC <- rep_len(0:9, n)
x <- xC
y <- rep_len(4:0, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr         min          lq        mean      median          uq         max neval
#   m1    5.099619    5.171017    5.312834    5.216994    5.283100    6.283539    20
#  m1b    4.385434    4.445713    4.605092    4.483453    4.551095    5.875877    20
#   m2    2.417861    2.452343    2.492067    2.480543    2.530377    2.660484    20
#  m2b    2.926915    2.961653    3.084997    3.021751    3.077324    4.220686    20
#  m2c    2.123245    2.195435    2.533441    2.278206    2.856874    3.800974    20
#  m2d    2.103713    2.238050    2.674693    2.355113    3.362142    3.637493    20
#   m3 9286.882351 9307.611081 9544.051457 9437.133414 9814.396820 9982.323049    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#   m1 m1b  m2 m2b m2c m2d   m3
#1 9.9 8.9 5.6 6.7 4.8 4.3 57.5

#100% repacement
xC <- rep_len(0:9, n)
x <- xC
y <- rep_len(9:0, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr         min          lq        mean      median          uq         max neval
#   m1    5.883064    5.915986    6.128063    5.995118    6.092747    7.247831    20
#  m1b    4.194141    4.218877    4.386549    4.266843    4.332457    5.502114    20
#  m2c    2.600136    2.645534    2.758381    2.662184    2.773307    3.999435    20
#  m2d    2.692732    2.733519    2.875407    2.753938    2.768791    3.969404    20
#   m2    2.904083    2.926344    3.008820    2.954213    3.036742    3.571559    20
#  m2b    2.568076    2.587834    2.636594    2.627963    2.678503    2.758791    20
#   m3 6618.263068 6635.364325 6907.177674 6779.890271 6923.410849 8135.443601    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#    m1 m1b  m2 m2b m2c m2d   m3
#1 10.7 7.4 6.4 5.2 5.6 4.8 57.6

#0% repacement
xC <- rep_len(5:9, n)
x <- xC
y <- rep_len(4:0, n)

microbenchmark(list = fun, setup = x <- xC, times = 20)
#Unit: milliseconds
# expr          min           lq         mean       median           uq          max neval
#   m1     4.175989     4.213025     4.319972     4.241362     4.379613     4.853646    20
#  m1b     4.068414     4.111130     4.184327     4.162872     4.214517     4.393815    20
#   m2     1.736049     1.775315     1.873898     1.849657     1.894493     2.286939    20
#  m2b     2.766647     2.807789     2.871928     2.824930     2.902665     3.312260    20
#  m2c     1.579129     1.637973     1.724936     1.704182     1.780902      2.028083    20
#  m2d     1.507742     1.619949     1.683850     1.681409     1.747972      1.852088    20
#   m3 10724.757111 12385.576878 12515.708573 12446.907482 12835.884597 13177.535579    20

memUse(list=fun, setup = quote(x <- xC), gctort = FALSE)
#   m1 m1b  m2 m2b m2c m2d   m3
#1 8.7 8.5 4.5 6.4 3.7 3.3 57.4


version
#platform       x86_64-pc-linux-gnu         
#arch           x86_64                      
#os             linux-gnu                   
#system         x86_64, linux-gnu           
#status                                     
#major          3                           
#minor          6.0                         
#year           2019                        
#month          04                          
#day            26                          
#svn rev        76424                       
#language       R                           
#version.string R version 3.6.0 (2019-04-26)
#nickname       Planting of a Tree          
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...