Я видел этот вопрос, и это очень интересно.Я копирую его код.
library(philentropy)
normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}
knn <- function(train, test, k, method){
n.test <- nrow(test)
n.train <- nrow(train)
if (n.train + n.test <= k) stop("k can not be more than n-1")
neigh <- matrix(0, nrow = n.test, ncol = k)
ddist <- NULL
for(i in 1:n.test) {
for(j in 1:n.train) {
xmat <- rbind(test[i,], train[j,])
ddist[j] <- distance(as.data.frame(xmat), method, k) #
}
neigh[i, ] <- sort(ddist)[2:(k + 1)]
}
return(neigh)
}
wbcd <- read.csv("https://resources.oreilly.com/examples/9781784393908/raw/ac9fe41596dd42fc3877cfa8ed410dd346c43548/Machine%20Learning%20with%20R,%20Second%20Edition_Code/Chapter%2003/wisc_bc_data.csv")
rownames(wbcd) <- wbcd$id
wbcd$id <- NULL
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))
wbcd_train<-wbcd_n[1:469,]
wbcd_test<-wbcd_n[470:549,]
wbcd_nn <-knn(wbcd_train, wbcd_test ,3, method="euclidean")
Проблема в том, что эта часть медленная, и я хочу оптимизировать ее.
for(i in 1:n.test) {
for(j in 1:n.train) {
xmat <- rbind(test[i,], train[j,])
ddist[j] <- distance(as.data.frame(xmat), method, k) #
}
neigh[i, ] <- sort(ddist)[2:(k + 1)]
}
return(neigh)
}
Есть ли один способ использовать функцию применения или сопоставить ее?
Я пытался запустить что-то эффективное, но я ничего не нашел.Только так:
f1 <- Vectorize(function(i, j) test_fun(mat1[j, ], mat2[i, ]))
out <- outer(seq_len(nrow(mat1)), seq_len(nrow(mat)), FUN = f1)
out
test_fun <- function(x, y){
distance <- abs(x-y)
distance <- sum(distance)
return(distance)
}