Как мне найти значения в df_s_t на основе значений в строках df и сохранить результаты в df ['s_t']? - PullRequest
0 голосов
/ 02 мая 2019

У меня есть следующий DataFrame (df):

print(df.head())
        Date        Contract_Name   Maturity  ...  Call_Put Option_Price         t
0 2016-01-04  Aalberts Industries 2017-10-20  ...         C        12.29  0.049315
1 2016-01-05  Aalberts Industries 2017-10-20  ...         P         0.01  0.049315
2 2016-01-06  Aalberts Industries 2017-10-20  ...         C        11.29  0.049315
3 2016-01-04  WOLTERS-KLUWER      2017-10-20  ...         P         0.01  0.049315
4 2016-01-05  WOLTERS-KLUWER      2017-10-20  ...         C         9.29  0.049315

И я хочу добавить столбец df ['s_t'], которому нужны данные из df_s_t, этот DataFrame выглядит следующим образом:

print(df_t_s.head())
        Date  Aalberts Industries  ...  UNILEVER WOLTERS-KLUWER
0 2016-01-04               30.125  ...    38.785         30.150
1 2016-01-05               30.095  ...    39.255         30.425
2 2016-01-06               29.405  ...    38.575         29.920
3 2016-01-07               29.005  ...    37.980         30.690
4 2016-01-08               28.930  ...    37.320         30.070

df ['Date'] можно сопоставить с df_s_t ['Date'], а df ['Contract_Name'] можно сопоставить с именами столбцов df_s_t.

Я надеюсь, что кто-нибудь поможет мне с созданием df ['s_t'] на основе значений из df_s_t (как описано выше).См. Также пример df ниже

print(df.head())
       Date        Contract_Name   Maturity  ...  Call_Put Option_Price         t  s_t
0 2016-01-04  Aalberts Industries 2017-10-20  ...         C        12.29  0.049315 30.125
1 2016-01-05  Aalberts Industries 2017-10-20  ...         P         0.01  0.049315 30.095
2 2016-01-06  Aalberts Industries 2017-10-20  ...         C        11.29  0.049315 29.405
3 2016-01-04  WOLTERS-KLUWER      2017-10-20  ...         P         0.01  0.049315 30.150
4 2016-01-05  WOLTERS-KLUWER      2017-10-20  ...         C         9.29  0.049315 30.425

Решение

df_s_t=pd.melt(df_s_t,id_vars=['Date'])
df_s_t=df_s_t.rename(columns={'variable':"Contract_Name"})
print(df_s_t.head())
        Date        Contract_Name   value
0 2016-01-04  Aalberts Industries  30.125
1 2016-01-05  Aalberts Industries  30.095
2 2016-01-06  Aalberts Industries  29.405
3 2016-01-07  Aalberts Industries  29.005
4 2016-01-08  Aalberts Industries   28.93

Теперь мы можем использовать слияние:

df=pd.merge(df,df_s_t,on=['Date','Contract_Name'],how='left')
df=df.rename(columns={'value':'s_t'})
print(df.head())

      Date        Contract_Name   Maturity  ...  Option_Price         t  s_t
0 2017-10-02  Aalberts Industries 2017-10-20  ...         12.29  0.049315  41.29
1 2017-10-02  Aalberts Industries 2017-10-20  ...          0.01  0.049315  41.29
2 2017-10-02  Aalberts Industries 2017-10-20  ...         11.29  0.049315  41.29
3 2017-10-02  Aalberts Industries 2017-10-20  ...          0.01  0.049315  41.29
4 2017-10-02  Aalberts Industries 2017-10-20  ...          9.29  0.049315  41.29

1 Ответ

0 голосов
/ 02 мая 2019

Вот решение для вас.
1) Я упростила ваши данные, df1 имеет только 2 столбца (Date и Contract_Name) / df2 имеет только 4 столбца (Date / A / B / C)
2)Я расплавляю df2 (с переменной, называемой 'Contract_Name'), а затем группирую дату и Contract_Name
3) Я объединяю оба кадра данных
4) Печать

import pandas as pd
df1 = pd.read_excel('Book1.xlsx', sheet_name='df1')
df2 = pd.melt(pd.read_excel('Book1.xlsx', sheet_name='df2'), id_vars=["Date"],var_name="Contract_Name", value_name="Value").groupby(['Date', 'Contract_Name']).sum().reset_index()
df = pd.merge(df1, df2, how='left', on=['Date','Contract_Name'])
print(df)
...