многомерная полиномиальная регрессия на данных RGB и sRGB Colorchecker - PullRequest
0 голосов
/ 07 апреля 2019

Мне нужно сопоставить RGB-изображение с sRGB ColorChecker и использовать полученные таким образом коэффициенты для коррекции цвета других (языковых изображений) изображений в базе данных.

Я пробовал линейную регрессию, но не очень уверенесли правильный в случае многомерной линейной регрессии, литература рекомендует полиномиальную регрессию, чтобы быть лучшим прогнозом

df=pd.read_csv("colorchart_photo_strobo_linear.csv")
df=pd.read_csv("colorchart_photo_strobo_linear.csv")

    y=df.iloc[:,1:4].values 
    yr=df.iloc[:,1:2].values
    yg=df.iloc[:,2:3].values
    yb=df.iloc[:,3:4].values 
    df1=pd.read_csv("colorchart_rendered_strobo_linear.csv")
    x=df.iloc[:,1:4].values
    plt.scatter(x, y, color='red')
    plt.grid(True)

     regr1 = linear_model.LinearRegression()
     regr.fit(x, yr)

     print('Intercept: \n', regr.intercept_)
     print('Coefficients: \n', regr.coef_)
     plt.plot(x,y,color='blue')
     plt.show()
     regr2 = linear_model.LinearRegression()
     regr.fit(x, yg)

     print('Intercept: \n', regr.intercept_)
     print('Coefficients: \n', regr.coef_)
     plt.plot(x,y,color='green')
     plt.show()
     regr3 = linear_model.LinearRegression()
     regr.fit(x, yb)

     print('Intercept: \n', regr.intercept_)
     print('Coefficients: \n', regr.coef_)
     plt.plot(x,y,color='magenta')
     plt.show()
     #prediction with sklearn
     x = [[0.14703, 0.10224,    0.0319]]
     print ('printyr: \n', regr.predict(x))

Требуется Xout = [A] Transpose.Xin

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...