Я полагаю, чтобы дать кратчайший путь из одного места в другое.Я совершенно новичок в этом, поэтому я начинаю с малого.Так же, как 10 перекрестков вокруг моего дома.Тем не менее, я получил, как распечатать путь из одного места в другое.Я пытаюсь выяснить, как присвоить имена этим краям.И я не знаю, лучше ли использовать матрицу смежности.Что делать, если у меня более 100 узлов?Как я могу это сделать?
// A C++ program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph
#include <iostream>
#include <limits.h>
#include <iomanip>
using namespace std;
// Number of vertices in the graph
#define V 14
// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
void printPath(int parent[], int j)
{
// Base Case : If j is source
if (parent[j] == -1)
return;
printPath(parent, parent[j]);
cout << " --> " << j;
}
// A utility function to print the constructed distance array
void printSolution(int dist[], int n, int parent[])
{
printPath(parent, n);
cout << "\nThe distance from Source to Destination is: "<< dist[n] << endl;
}
// Function that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src, int destination)
{
int dist[V]; // The output array. dist[i] will hold the shortest distance from src to i
bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest path tree or shortest distance from src to i is finalized
int parent[V]; // Parent array to store shortest path tree
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++) {
dist[i] = INT_MAX;
sptSet[i] = false;
parent[i] = -1;
}
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V - 1; count++)
{
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in the first iteration.
int u = minDistance(dist, sptSet);
if (u == destination)
break;
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) {
parent[v] = u;
dist[v] = dist[u] + graph[u][v];
}
}
// print the constructed distance array
cout << "From " << src;
printSolution(dist, destination, parent);
}
// driver program to test above function
int main()
{
/* Let us create the example graph discussed above */
int graph[V][V] = { {0, 5, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0},
{5, 0, 6, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0},
{0, 6, 0, 3, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 3, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 7, 0, 4, 0, 0, 0, 0, 0, 0, 0, 7},
{0, 0, 7, 0, 4, 0, 4, 0, 0, 0, 0, 0, 6, 0},
{0, 8, 0, 0, 0, 4, 0, 4, 0, 0, 0, 5, 0, 0},
{0, 0, 0, 0, 0, 0, 4, 0, 3, 0, 4, 0, 0, 0},
{8, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 0, 4, 0, 0},
{0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 4, 0, 4, 0},
{0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 4, 0, 4},
{0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 4, 0}
};
dijkstra(graph, 0, 13);
return 0;
}