Я пытаюсь преобразовать формат строки даты в числовой, но получаю ошибку,
мой столбец даты, как это:
train['AVERAGE_ACCT_AGE'].head(6)
0 0yrs 0mon
1 1yrs 11mon
2 0yrs 0mon
3 0yrs 8mon
4 0yrs 0mon
5 1yrs 9mon
Name: AVERAGE_ACCT_AGE, dtype: object
Я попробовал этот код, чтобы добавить формат DateTime к этой переменной.
train['AVERAGE_ACCT_AGE']=pd.to_datetime(train['AVERAGE.ACCT.AGE'], format='%Y%m')
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\Anaconda3\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike(arg, box, format, name, tz)
376 try:
--> 377 values, tz = conversion.datetime_to_datetime64(arg)
378 return DatetimeIndex._simple_new(values, name=name, tz=tz)
pandas\_libs\tslibs\conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_datetime64()
TypeError: Unrecognized value type: <class 'str'>
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-49-13f5c298f460> in <module>()
----> 1 train['AVERAGE_ACCT_AGE']=pd.to_datetime(train['AVERAGE.ACCT.AGE'], format='%Y-%m')
~\Anaconda3\lib\site-packages\pandas\core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc, box, format, exact, unit, infer_datetime_format, origin, cache)
449 else:
450 from pandas import Series
--> 451 values = _convert_listlike(arg._values, True, format)
452 result = Series(values, index=arg.index, name=arg.name)
453 elif isinstance(arg, (ABCDataFrame, MutableMapping)):
~\Anaconda3\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike(arg, box, format, name, tz)
378 return DatetimeIndex._simple_new(values, name=name, tz=tz)
379 except (ValueError, TypeError):
--> 380 raise e
381
382 if arg is None:
~\Anaconda3\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike(arg, box, format, name, tz)
366 dayfirst=dayfirst,
367 yearfirst=yearfirst,
--> 368 require_iso8601=require_iso8601
369 )
370
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime()
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime()
ValueError: time data 0yrs 0mon doesn't match format specified
После этого я попробовал этот код, чтобы добавить игнорирование ошибок в столбец.
train['AVERAGE_ACCT_AGE']=pd.to_datetime(train['AVERAGE.ACCT.AGE'], format='%Y%m',errors='ignore',infer_datetime_format=True)
Добавлен формат даты и времени, затем код
train['yrs']=train['AVERAGE_ACCT_AGE'].dt.year
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-50-39b8c6e07f77> in <module>()
----> 1 train['yrs']=train['AVERAGE_ACCT_AGE'].dt.year
~\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
4366 if (name in self._internal_names_set or name in self._metadata or
4367 name in self._accessors):
-> 4368 return object.__getattribute__(self, name)
4369 else:
4370 if self._info_axis._can_hold_identifiers_and_holds_name(name):
~\Anaconda3\lib\site-packages\pandas\core\accessor.py in __get__(self, obj, cls)
130 # we're accessing the attribute of the class, i.e., Dataset.geo
131 return self._accessor
--> 132 accessor_obj = self._accessor(obj)
133 # Replace the property with the accessor object. Inspired by:
134 # http://www.pydanny.com/cached-property.html
~\Anaconda3\lib\site-packages\pandas\core\indexes\accessors.py in __new__(cls, data)
323 pass # we raise an attribute error anyway
324
--> 325 raise AttributeError("Can only use .dt accessor with datetimelike "
326 "values")
Пожалуйста, помогите мне, как преобразовать тип объекта в числовой тип. Я хочу годы и месяцы столбцов отдельно.
AttributeError: Can only use .dt accessor with datetimelike values