Решение зависит от вашей проблемы, но вы можете сделать это с помощью одного группового вызова. Чтобы получить «avg_delay_pos», вам просто нужно удалить отрицательные (и нулевые) значения.
df['delay_pos'] = df['delay'].where(df['delay'] > 0)
(df.filter(like='delay')
.groupby(pd.to_datetime(df[['year', 'month', 'day']]))
.mean()
.add_prefix('avg_'))
avg_delay avg_delay_pos
2013-01-01 0 NaN
2013-02-01 -4 NaN
2013-03-01 50 50.0
2014-01-01 -60 NaN
2014-02-01 9 9.0
2014-03-01 10 10.0
Разбивка
where
используется для маскировки значений, которые не являются положительными.
df['delay_pos'] = df['delay'].where(df['delay'] > 0)
# df['delay'].where(df['delay'] > 0)
0 NaN
1 NaN
2 50.0
3 NaN
4 9.0
5 10.0
Name: delay, dtype: float64
Затем извлеките столбцы задержки, по которым мы хотим сгруппировать,
df.filter(like='delay')
delay delay_pos
0 0 NaN
1 -4 NaN
2 50 50.0
3 -60 NaN
4 9 9.0
5 10 10.0
Затем выполните groupby
в день,
_.groupby(pd.to_datetime(df[['year', 'month', 'day']])).mean()
delay delay_pos
2013-01-01 0 NaN
2013-02-01 -4 NaN
2013-03-01 50 50.0
2014-01-01 -60 NaN
2014-02-01 9 9.0
2014-03-01 10 10.0
Если pd.to_datetime
используется для преобразования столбцов года / месяца / дня в один столбец даты и времени, более эффективно группировать по одному столбцу, чем по нескольким.
pd.to_datetime(df[['year', 'month', 'day']])
0 2013-01-01
1 2013-02-01
2 2013-03-01
3 2014-01-01
4 2014-02-01
5 2014-03-01
dtype: datetime64[ns]
Финальный .add_prefix('avg_')
добавляет к результату префикс "_avg".
Альтернативный способ сделать это, если вам нужны отдельные столбцы год / месяц / день, будет
df['delay_pos'] = df['delay'].where(df['delay'] > 0)
df.groupby(['year', 'month', 'day']).mean().add_prefix('avg_').reset_index()
year month day avg_delay avg_delay_pos
0 2013 1 1 0 NaN
1 2013 2 1 -4 NaN
2 2013 3 1 50 50.0
3 2014 1 1 -60 NaN
4 2014 2 1 9 9.0
5 2014 3 1 10 10.0