Я использую SIFT + RANSAC для определения функции, а также местоположения объектов или логотипов на изображении.
Поскольку я следую учебному пособию по Opencv, мне нужно дать одно изображение запроса и одно изображение обучения.
Но я хотел дать 3 разных изображения запроса с одним изображением поезда.
Возможно ли это?
Я попробовал код ниже:
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv.imread('/home/jcl-vb/Desktop/Dataset/Balea_dm_Logo0.jpg',0)# Query Image 1
img2 = cv.imread('/home/jcl-vb/Desktop/Dataset/Balea_dm_Logo1.jpg',0)# Query Image 2
img3 = cv.imread('/home/jcl-vb/Desktop/Dataset/Balea_dm_Logo2.jpg',0)# Query Image 3
img4 = cv.imread('/home/jcl-vb/downloads/Balea/6. img_0045-e1488488847800.jpg',0) # train Image
# Initiate SIFT detector
sift = cv.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
kp3, des3 = sift.detectAndCompute(img3,None)
kp4, des4 = sift.detectAndCompute(img4,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches1 = flann.knnMatch(des1,des4,k=2)
matches2 = flann.knnMatch(des2,des4,k=2)
matches3 = flann.knnMatch(des3,des4,k=2)
Тогда на самом деле я не знаю, как мне идти дальше?
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp4[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv.perspectiveTransform(pts,M)
img4 = cv.polylines(img4,[np.int32(dst)],True,255,3, cv.LINE_AA)
else:
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
matchesMask1 = None
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask,
flags = 2)
print(draw_params)
img3 = cv.drawMatches(img1,kp1,img4,kp4,good,None,**draw_params)
plt.figure(figsize=(10,10))
plt.imshow(img3)
plt.show()
Фактический результат: одно изображение запроса с одним изображением поезда в img4
Ожидаемый результат: три разных изображения запроса с одним поездом. Изображение в img4.