Я получаю сообщение об ошибке при запуске pyspark в Jupyter Notebook с использованием python 3.7 с использованием приведенного ниже кода.
from pyspark import SparkContext
from pyspark.sql.session import SparkSession
from pyspark.sql import SQLContext
import pyspark as ps
conf = ps.SparkConf().setMaster("yarn-client").setAppName("sparK-mer")
conf.set("spark.executor.heartbeatInterval","3600s")
sc = SparkContext('local')
sqlContext = SQLContext(sc)
from pyspark.mllib.linalg import Vector, Vectors
from nltk.stem.wordnet import WordNetLemmatizer
from pyspark.ml.feature import RegexTokenizer, StopWordsRemover, Word2Vec
Я читаю CSV-файл на основе следующего кода:
datanew = sqlContext.read.format("csv") \
.options(header='true', inferschema='true') \
.load("C://Users//mypath//data.csv")
parts = datanew.rdd.map(lambda l: l.split(","))
datapysp = parts.map(lambda p: Row(uiid=p[0],title=(p[3].strip()),text=(p[4].strip())))
schemaString = "uiid title text"
fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
schema = StructType(fields)
sqlContext.createDataFrame(datapysp, schema).show()
Это сообщение об ошибке, и я получаю, и есть столбцы, упомянутые UIID, Название и текст.
Py4JJavaError: An error occurred while calling o74.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0 (TID 2, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
Я просмотрел ответы, приведенные здесь:
Исключение тайм-аута сокета Pyspark после некоторого времени работы приложения . Я попытался изменить код к этому согласно предоставленным ответам.
import pyspark as ps
conf = ps.SparkConf().setMaster("yarn-client").setAppName("sparK-mer")
conf.set("spark.executor.heartbeatInterval","3600s")
sc = ps.SparkContext('local[4]', '', conf=conf)
Я получаю сообщение об ошибке, в котором говорится, что процесс шлюза Java завершился до отправки номера порта во время выполнения этой части sc = ps.SparkContext ('local [4]', '', conf = conf).
Также пытался, как это, но все еще та же ошибка, которую я получил относительно тайм-аута Accept.
parts = datanew.rdd.map(lambda l: l.split(","))
datapysp = parts.map(lambda p: Row(uiid=p[0],title=(p[3].strip()),text=(p[4].strip())))
schemaString = "uiid title text"
fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
schema = StructType(fields)
sqlContext.createDataFrame(datapysp,
schema).show().config("sqlContext.executor.heartbeatInterval", "10000s")
--added this but still the error is not being resolved.
Буду признателен, если кто-нибудь сможет мне помочь с этим. Я использую 64-битную Windows 10.