Я столкнулся с ошибкой, вызванной оконной функцией.
Когда я применяю этот сценарий и сохраняю только несколько строк образца, он работает нормально, однако, когда я применяю его ко всему набору данных (всего несколько ГБ)
он завершается с этой причудливой ошибкой на последнем шаге при попытке сохранения в hdfs ... скрипт работает, когда я сохраняю без оконной функции, поэтому проблема должна быть из-за этого ( У меня около 325 столбцов функций, работающих через цикл for ).
Есть идеи, что может быть причиной проблемы? Моя цель - просто рассчитать данные временных рядов с помощью метода прямой заливки для каждой переменной в моем фрейме данных.
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql import types as T
from pyspark.sql import Window
import sys
print(spark.version)
'2.3.0'
# sample data
df = spark.createDataFrame([('2019-05-10 7:30:05', '1', '10', '0.5', 'FALSE'),\
('2019-05-10 7:30:10', '2', 'UNKNOWN', '0.24', 'FALSE'),\
('2019-05-10 7:30:15', '3', '6', 'UNKNOWN', 'TRUE'),\
('2019-05-10 7:30:20', '4', '7', 'UNKNOWN', 'UNKNOWN'),\
('2019-05-10 7:30:25', '5', '10', '1.1', 'UNKNOWN'),\
('2019-05-10 7:30:30', '6', 'UNKNOWN', '1.1', 'NULL'),\
('2019-05-10 7:30:35', '7', 'UNKNOWN', 'UNKNOWN', 'TRUE'),\
('2019-05-10 7:30:49', '8', '50', 'UNKNOWN', 'UNKNOWN')], ["date", "id", "v1", "v2", "v3"])
df = df.withColumn("date", F.col("date").cast("timestamp"))
# imputer process / all cols that need filled are strings
def stringReplacer(x, y):
return F.when(x != y, x).otherwise(F.lit(None)) # replace with NULL
def forwardFillImputer(df, cols=[], partitioner="date", value="UNKNOWN"):
for i in cols:
window = Window\
.partitionBy(F.month(partitioner))\
.orderBy(partitioner)\
.rowsBetween(-sys.maxsize, 0)
df = df\
.withColumn(i, stringReplacer(F.col(i), value))
fill = F.last(df[i], ignorenulls=True).over(window)
df = df.withColumn(i, fill)
return df
df2 = forwardFillImputer(df, cols=[i for i in df.columns])
# errors here
df2\
.write\
.format("csv")\
.mode("overwrite")\
.option("header", "true")\
.save("test_window_func.csv")
Py4JJavaError: An error occurred while calling o13504.save.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:224)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:154)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:273)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:267)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:225)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.StackOverflowError
at org.apache.spark.sql.execution.SparkPlan.prepare(SparkPlan.scala:200)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:200)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$prepare$1.apply(SparkPlan.scala:200)
at scala.collection.immutable.List.foreach(List.scala:381)
возможный рабочий раствор
def forwardFillImputer(df, cols=[], partitioner="date", value="UNKNOWN"):
window = Window \
.partitionBy(F.month(partitioner)) \
.orderBy(partitioner) \
.rowsBetween(-sys.maxsize, 0)
imputed_cols = [F.last(stringReplacer(F.col(i), value), ignorenulls=True).over(window).alias(i)
for i in cols]
missing_cols = [i for i in df.columns if i not in cols]
return df.select(missing_cols+imputed_cols)
df2 = forwardFillImputer(df, cols=[i for i in df.columns[1:]])
df2.printSchema()
root
|-- date: timestamp (nullable = true)
|-- id: string (nullable = true)
|-- v1: string (nullable = true)
|-- v2: string (nullable = true)
|-- v3: string (nullable = true)
df2.show()
+-------------------+---+---+----+-----+
| date| id| v1| v2| v3|
+-------------------+---+---+----+-----+
|2019-05-10 07:30:05| 1| 10| 0.5|FALSE|
|2019-05-10 07:30:10| 2| 10|0.24|FALSE|
|2019-05-10 07:30:15| 3| 6|0.24| TRUE|
|2019-05-10 07:30:20| 4| 7|0.24| TRUE|
|2019-05-10 07:30:25| 5| 10| 1.1| TRUE|
|2019-05-10 07:30:30| 6| 10| 1.1| NULL|
|2019-05-10 07:30:35| 7| 10| 1.1| TRUE|
|2019-05-10 07:30:49| 8| 50| 1.1| TRUE|
+-------------------+---+---+----+-----+