Рассчитать среднее и медиану по диапазону дат в Shiny - PullRequest
0 голосов
/ 30 мая 2019

Требуется рассчитать среднее и медиану числовых переменных, сгруппированных по выбранному диапазону дат только для данных, а не данных листовок.Карта листовки работает (просто нужно уменьшить масштаб, чтобы увидеть поддельные графики long / lat, но теперь не беспокоюсь об этом).

Я создал второй кадр данных df10 для датируемой медианы / среднего суммирования данных,

До сих пор пытались изменить функцию ввода, чтобы создать отдельные переменные для среднего, но оказалось, что она громоздка и не нужна для моих нужд.

Попытка использовать colMeans(dataset()[,which(sapply(dataset(), class) != "Date")]) здесь Блестящий расчет среднего значения столбцов в фрейме данных

Ошибка "invalid 'x' type in 'x && y".Это связано с colmeans

### Generate a dataset ###
start_date <- as.Date('2018-01-01')  
end_date <- as.Date('2019-05-10')   
set.seed(1984)
date1 <- as.Date(sample( as.numeric(start_date): as.numeric(end_date), 988, 
                         replace = T), origin = '1970-01-01')
group <- rep(letters[1:26], each = 38)
x1 <- runif(n = 988, min = 3.26, max = 10)
x2 <- runif(n = 988, min = 3.26, max = 10)
x3 <- runif(n = 988, min = 3.26, max = 10)
x4 <- runif(n = 988, min = 3.26, max = 10)
x5 <- runif(n = 988, min = 3.26, max = 10)
latitude <- runif(988,40.75042,50.75042)
longitude <- runif(988,-73.98928,-63.98928)

dataframe <- cbind(data.frame(date1,group,x1,x2,x3,x4,x5,latitude,longitude))

df10 <- cbind(data.frame(date1,group,x1,x2,x3,x4,x5))
library(lubridate)
dataframe$date <- ymd(dataframe$date1)
df10$date <- ymd(df10$date1)

library(shiny)
library(leaflet)
library(DT)
dataframe$defectrateLvl <- cut(dataframe$x1, 
                               c(3.26,6,100), include.lowest = T,
                               labels = c('3.26-6x','6x+')) 
beatCol <- colorFactor(palette = c('yellow', 'red'), dataframe$defectrateLvl)


ui <- fluidPage(
  dateInput(inputId = "date", label="Select a date", value = "2019-03-01", min = "2018-01-01", max = "2019-05-10",
            format = "yyyy-mm-dd", startview = "month",
            language = "en", width = NULL),
  leafletOutput("map"),
  fluidRow(
    dateRangeInput("daterange","Date range:",start=Sys.Date()-10, end=Sys.Date() -1),
    DT::dataTableOutput("tbl")
  )
)

server <- shinyServer(function (input, output,session) {
  dailyData <- reactive(dataframe[dataframe$date == format(input$date, '%Y/%m/%d'), ] )
  output$map <- renderLeaflet({
    dataframe <- dailyData()  # Added this in attempt to integrate
    dataframe %>% leaflet() %>% 
      setView(lng = -73.98928, lat = 40.75042, zoom = 10) %>%
      addProviderTiles("CartoDB.Positron", options = providerTileOptions(noWrap = TRUE)) %>%
      addCircleMarkers(
        lng=~dataframe$longitude, # Longitude coordinates
        lat=~dataframe$latitude, # Latitude coordinates
        #radius=~defectrateLvl, # Total count
        popup =~ dataframe$group,
        color = ~beatCol(dataframe$defectrateLvl),
        fillOpacity=0.5 # Circle Fill Opacity
      )
  })  
  output$tbl<-DT::renderDataTable({
    dataset <- reactive({df10 })
    dataset() %>% group_by(group) %>% 
      filter(date > input$daterange[1],
             date < input$daterange[2])
    #sapply(Filter(is.numeric, df6), mean)
    colMeans(dataset()[,which(sapply(dataset(), class) !="date","date1","group")])
  })

})


shinyApp(ui, server)

Я предполагаю, что числовые переменные будут суммироваться по среднему и, если возможно, по медиане, но это менее важно в настоящее время.Любая помощь будет принята с благодарностью.

1 Ответ

0 голосов
/ 30 мая 2019

Ошибка вызвана последней функцией.

colMeans(df[,which(sapply(df, class) !="date","date1","group")])

Этот код будет применять функцию ко всем столбцам, которые не относятся к классу xy."date" или "group" являются именами столбцов.

ColMeans также создает числовой вектор, что приведет к ошибке, поскольку DT может отображать только матрицу или элемент данных.Я предоставил вам код с созданием кадра данных.Но в целом я хотел бы подумать об использовании dplyr для создания вашего результата.Это намного проще.

Вот решение, которое работает, однако вы должны изменить входные данные даты, так как предопределенный выбор создает data.frame с 0 строками.

library(lubridate)
library(shiny)
library(leaflet)
library(DT)
library(dplyr)

### Generate a dataset ###
start_date <- as.Date('2018-01-01')  
end_date <- as.Date('2019-05-10')   
set.seed(1984)
date1 <- as.Date(sample( as.numeric(start_date): as.numeric(end_date), 988, 
                         replace = T), origin = '1970-01-01')
group <- rep(letters[1:26], each = 38)
x1 <- runif(n = 988, min = 3.26, max = 10)
x2 <- runif(n = 988, min = 3.26, max = 10)
x3 <- runif(n = 988, min = 3.26, max = 10)
x4 <- runif(n = 988, min = 3.26, max = 10)
x5 <- runif(n = 988, min = 3.26, max = 10)
latitude <- runif(988,40.75042,50.75042)
longitude <- runif(988,-73.98928,-63.98928)

dataframe <- cbind(data.frame(date1,group,x1,x2,x3,x4,x5,latitude,longitude))

df10 <- cbind(data.frame(date1,group,x1,x2,x3,x4,x5))
dataframe$date <- ymd(dataframe$date1)
df10$date <- ymd(df10$date1)


dataframe$defectrateLvl <- cut(dataframe$x1, 
                               c(3.26,6,100), include.lowest = T,
                               labels = c('3.26-6x','6x+')) 
beatCol <- colorFactor(palette = c('yellow', 'red'), dataframe$defectrateLvl)


ui <- fluidPage(
    dateInput(inputId = "date", label="Select a date", value = "2019-03-01", min = "2018-01-01", max = "2019-05-10",
              format = "yyyy-mm-dd", startview = "month",
              language = "en", width = NULL),
    leafletOutput("map"),
    fluidRow(
        dateRangeInput("daterange","Date range:",start=Sys.Date()-10, end=Sys.Date() -1),
        DT::dataTableOutput("tbl")
    )
)

server <- shinyServer(function (input, output,session) {
    dailyData <- reactive(dataframe[dataframe$date == format(input$date, '%Y/%m/%d'), ] )
    output$map <- renderLeaflet({
        dataframe <- dailyData()  # Added this in attempt to integrate
        dataframe %>% leaflet() %>% 
            setView(lng = -73.98928, lat = 40.75042, zoom = 10) %>%
            addProviderTiles("CartoDB.Positron", options = providerTileOptions(noWrap = TRUE)) %>%
            addCircleMarkers(
                lng=~dataframe$longitude, # Longitude coordinates
                lat=~dataframe$latitude, # Latitude coordinates
                #radius=~defectrateLvl, # Total count
                popup =~ dataframe$group,
                color = ~beatCol(dataframe$defectrateLvl),
                fillOpacity=0.5 # Circle Fill Opacity
            )
    })  

    dataset <- reactive({df10 })

    output$tbl <-DT::renderDataTable({
        df <- dataset()

        df <- df %>% 
            group_by(group) %>% 
            filter(date > input$daterange[1],
                   date < input$daterange[2])
        #sapply(Filter(is.numeric, df6), mean)
        result <- data.frame(colMeans(df[which(sapply(df, class)=="numeric")]))
        colnames(result)[1] <- "Result"
        result
        #colMeans(df[,which(sapply(df, class) !="date","date1","group")])
    })

})


shinyApp(ui, server)
...