Я пытаюсь реализовать Double Q-Learning с использованием нейронных сетей из библиотеки Keras.Когда я впервые попробовал Simple DQN, график вознаграждения сильно колебался, поэтому я реализовал Double DQN.Тем не менее, я получаю почти те же результаты (много колебаний).
Я пытался изменить гиперпараметры сети, но проблема все еще сохраняется.
График вознаграждений
Мой код:
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = GAMMA
self.epsilon = START_EPSILON
self.epsilon_min = EPSILON_MIN
self.epsilon_decay = EPSILON_DECAY
self.learning_rate = LEARNING_RATE
self.model = self.build_model()
self.target_model = self.build_model()
def build_model(self):
model = Sequential()
model.add(Dense(16, input_dim=self.state_size, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse',optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
self.model.set_weights(self.target_model.get_weights())
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
action_t = np.argmax(self.model.predict(state)[0])
target = reward
if not done:
target = (reward + self.gamma *
(self.target_model.predict(next_state)[0][action_t]))
target_f = self.target_model.predict(state)
target_f[0][action] = target
self.target_model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
Правильна ли моя реализация алгоритма двойного обучения в приведенном выше коде?