Давайте посмотрим на простой класс:
class Temp1(nn.Module):
def __init__(self, stateSize, actionSize, layers=[10, 5], activations=[F.tanh, F.tanh] ):
super(Temp1, self).__init__()
self.layer1 = nn.Linear(stateSize, layers[0])
self.layer2 = nn.Linear(layers[0], layers[1])
self.fcFinal = nn.Linear( layers[1], actionSize )
return
Это довольно простой модуль pytorch. Это создает простую последовательную плотную сеть. Если мы проверим его скрытые параметры, мы увидим следующее:
t1 = Temp1(2, 2)
list(t1.parameters())
Это ожидаемый результат ...
[Parameter containing:
tensor([[-0.0311, -0.5513],
[-0.0634, -0.3783],
[-0.2514, 0.6139],
[ 0.4711, -0.0241],
[-0.1739, 0.2208],
[-0.1533, 0.3838],
[-0.6490, -0.5784],
[ 0.5312, 0.6703],
[ 0.3506, 0.3652],
[ 0.1768, -0.4158]], requires_grad=True), Parameter containing:
tensor([-0.3199, -0.4154, -0.5530, -0.6738, -0.4411, 0.2641, -0.3576, 0.0447,
0.0254, 0.0965], requires_grad=True), Parameter containing:
tensor([[-2.8257e-01, 6.7583e-02, 9.0356e-02, 1.0868e-01, 4.0876e-02,
4.0616e-02, 4.4419e-02, -8.1544e-02, 2.5244e-01, 3.8777e-03],
[-8.0950e-03, -1.4175e-01, -2.9492e-01, 3.1439e-01, -2.3065e-01,
-6.6631e-02, 3.0047e-01, 2.8353e-01, 2.3457e-01, -3.1399e-03],
[-5.2522e-02, -2.2183e-01, -1.5485e-01, 2.6317e-01, 2.8273e-01,
-7.4823e-02, -5.3704e-02, 9.3526e-02, -1.7916e-01, -3.1132e-04],
[ 8.9063e-02, 2.9263e-01, -1.0052e-01, 8.7005e-02, -1.1246e-01,
-2.7968e-01, 4.1411e-02, -1.6776e-01, 1.2363e-01, -2.2808e-01],
[ 2.9244e-02, 5.8296e-02, -2.9729e-01, -3.1437e-01, -9.3182e-02,
-7.5236e-03, 5.6159e-02, -2.2075e-02, 1.0337e-01, 8.1123e-02]],
requires_grad=True), Parameter containing:
tensor([ 0.2240, 0.0997, -0.0047, -0.1784, -0.0369], requires_grad=True), Parameter containing:
tensor([[ 0.3546, -0.2180, 0.1723, -0.0463, 0.2572],
[-0.1669, -0.1364, -0.0398, 0.2233, -0.1805]], requires_grad=True), Parameter containing:
tensor([ 0.0871, -0.1698], requires_grad=True)]
Теперь давайте попробуем немного обобщить это:
class Temp(nn.Module):
def __init__(self, stateSize, actionSize, layers=[10, 5], activations=[F.tanh, F.tanh] ):
super(Temp, self).__init__()
# Generate the fullly connected layer functions
self.fcLayers = []
oldN = stateSize
for i, layer in enumerate(layers):
self.fcLayers.append( nn.Linear(oldN, layer) )
oldN = layer
self.fcFinal = nn.Linear( oldN, actionSize )
return
Оказывается, число параметров в этом модуле больше не совпадает ...
t = Temp(2, 3)
list(t.parameters())
[Parameter containing:
tensor([[-0.3342, 0.4111, 0.0418, 0.4457, 0.0648],
[ 0.4364, -0.0360, -0.2239, 0.4025, 0.1661],
[ 0.1932, -0.0896, 0.3269, -0.2179, 0.1035]], requires_grad=True),
Parameter containing:
tensor([-0.2867, -0.1354, -0.0026], requires_grad=True)]
Я верю, что понимаю , почему это происходит. Большой вопрос, как мы можем преодолеть эту проблему? Например, второй обобщенный метод не будет отправляться в графический процессор надлежащим образом и не будет обучен оптимизатором.