Гораздо проще и понятнее просто разбить ваш фрейм данных на две части, сохранить 10% в файл (dataframe.to_csv(..)
) и применить свои вычисления к 90% во втором df.
Вы делаете это путем вычисления нового столбца, который сообщает вам, является ли строка тестовой или нет, и делите ваш фрейм данных на две части по этому новому значению столбцов:
Создание файла данных:
fn = "heart_disease.csv"
with open(fn,"w") as f:
# doubled the data provided
f.write("""Age,AL,SEX,DIAB,SMOK,CHOL,LAD,RCA,LM
65,0,M,n,y,220,80,75,20\n45,0.2,F,n,n,300,90,35,35\n66,-1,F,y,y,200,90,80,20
70,0.2,F,n,y,220,40,85,15\n80,1.1,M,y,y,200,90,90,25\n55,0,M,y,y,240,95,45,25
90,-1,M,n,y,350,35,75,20\n88,1,F,y,y,200,40,85,20\n50,1.1,M,n,n,220,55,30,30
95,-1,M,n,y,230,75,85,15\n30,1.1,F,n,y,235,75,20,30
65,0,M,n,y,220,80,75,20\n45,0.2,F,n,n,300,90,35,35\n66,-1,F,y,y,200,90,80,20
70,0.2,F,n,y,220,40,85,15\n80,1.1,M,y,y,200,90,90,25\n55,0,M,y,y,240,95,45,25
90,-1,M,n,y,350,35,75,20\n88,1,F,y,y,200,40,85,20\n50,1.1,M,n,n,220,55,30,30
95,-1,M,n,y,230,75,85,15\n30,1.1,F,n,y,235,75,20,30
""")
Программа:
import pandas as pd
fn = "heart_disease.csv"
store_data = pd.read_csv(fn)
print(store_data)
import random
import numpy as np
percentage = 0.1
store_data["test"] = np.random.rand(len(store_data))
test_data = store_data[store_data.test <= percentage]
other_data = store_data[store_data.test > percentage]
print(test_data)
print(other_data)
Выход:
# original data
Age AL SEX DIAB SMOK CHOL LAD RCA LM
0 65 0.0 M n y 220 80 75 20
1 45 0.2 F n n 300 90 35 35
2 66 -1.0 F y y 200 90 80 20
3 70 0.2 F n y 220 40 85 15
4 80 1.1 M y y 200 90 90 25
5 55 0.0 M y y 240 95 45 25
6 90 -1.0 M n y 350 35 75 20
7 88 1.0 F y y 200 40 85 20
8 50 1.1 M n n 220 55 30 30
9 95 -1.0 M n y 230 75 85 15
10 30 1.1 F n y 235 75 20 30
11 65 0.0 M n y 220 80 75 20
12 45 0.2 F n n 300 90 35 35
13 66 -1.0 F y y 200 90 80 20
14 70 0.2 F n y 220 40 85 15
15 80 1.1 M y y 200 90 90 25
16 55 0.0 M y y 240 95 45 25
17 90 -1.0 M n y 350 35 75 20
18 88 1.0 F y y 200 40 85 20
19 50 1.1 M n n 220 55 30 30
20 95 -1.0 M n y 230 75 85 15
21 30 1.1 F n y 235 75 20 30
# data with test <= 0.1
Age AL SEX DIAB SMOK CHOL LAD RCA LM test
3 70 0.2 F n y 220 40 85 15 0.093135
10 30 1.1 F n y 235 75 20 30 0.021302
# data with test > 0.1
Age AL SEX DIAB SMOK CHOL LAD RCA LM test
0 65 0.0 M n y 220 80 75 20 0.449546
1 45 0.2 F n n 300 90 35 35 0.953321
2 66 -1.0 F y y 200 90 80 20 0.928233
4 80 1.1 M y y 200 90 90 25 0.672880
5 55 0.0 M y y 240 95 45 25 0.136537
6 90 -1.0 M n y 350 35 75 20 0.439261
7 88 1.0 F y y 200 40 85 20 0.935340
8 50 1.1 M n n 220 55 30 30 0.737416
9 95 -1.0 M n y 230 75 85 15 0.461699
11 65 0.0 M n y 220 80 75 20 0.548624
12 45 0.2 F n n 300 90 35 35 0.679861
13 66 -1.0 F y y 200 90 80 20 0.195141
14 70 0.2 F n y 220 40 85 15 0.997854
15 80 1.1 M y y 200 90 90 25 0.871436
16 55 0.0 M y y 240 95 45 25 0.907141
17 90 -1.0 M n y 350 35 75 20 0.295690
18 88 1.0 F y y 200 40 85 20 0.970249
19 50 1.1 M n n 220 55 30 30 0.566218
20 95 -1.0 M n y 230 75 85 15 0.545188
21 30 1.1 F n y 235 75 20 30 0.217490
Это случайно, вы можете получить ровно 10% ваших данных - или вы можете получить меньше / больше 10% - чем больше ваши данные, тем ближе вы получите к 10%.
Вы можете использовать «производные» кадры данных для сохранения данных в тестовых и других данных, используя df.to_csv
.
Для чистого решения для панд Как создать тестовые и обучающие образцы из одного кадра данных с пандами? является вашим дубликатом, но вы, похоже, обрабатываете csv отдельно, поэтому не уверены, применимо ли оно.