После просмотра видео Эндрю Нга о Bleu Score Я хотел реализовать его с нуля на python. Я написал полный код на Python с Numpy экономно. Это полный код
import numpy as np
def n_gram_generator(sentence,n= 2,n_gram= False):
'''
N-Gram generator with parameters sentence
n is for number of n_grams
The n_gram parameter removes repeating n_grams
'''
sentence = sentence.lower() # converting to lower case
sent_arr = np.array(sentence.split()) # split to string arrays
length = len(sent_arr)
word_list = []
for i in range(length+1):
if i < n:
continue
word_range = list(range(i-n,i))
s_list = sent_arr[word_range]
string = ' '.join(s_list) # converting list to strings
word_list.append(string) # append to word_list
if n_gram:
word_list = list(set(word_list))
return word_list
def bleu_score(original,machine_translated):
'''
Bleu score function given a orginal and a machine translated sentences
'''
mt_length = len(machine_translated.split())
o_length = len(original.split())
# Brevity Penalty
if mt_length>o_length:
BP=1
else:
penality=1-(mt_length/o_length)
BP=np.exp(penality)
# calculating precision
precision_score = []
for i in range(mt_length):
original_n_gram = n_gram_generator(original,i)
machine_n_gram = n_gram_generator(machine_translated,i)
n_gram_list = list(set(machine_n_gram)) # removes repeating strings
# counting number of occurence
machine_score = 0
original_score = 0
for j in n_gram_list:
machine_count = machine_n_gram.count(j)
original_count = original_n_gram.count(j)
machine_score = machine_score+machine_count
original_score = original_score+original_count
precision = original_score/machine_score
precision_score.append(precision)
precisions_sum = np.array(precision_score).sum()
avg_precisions_sum=precisions_sum/mt_length
bleu=BP*np.exp(avg_precisions_sum)
return bleu
if __name__ == "__main__":
original = "this is a test"
bs=bleu_score(original,original)
print("Bleu Score Original",bs)
Я пытался проверить свой результат с помощью nltk's
.
from nltk.translate.bleu_score import sentence_bleu
reference = [['this', 'is', 'a', 'test']]
candidate = ['this', 'is', 'a', 'test']
score = sentence_bleu(reference, candidate)
print(score)
Проблема в том, что у меня блеу примерно 1009 *, а у nltk 1
. Что я делаю неправильно?
Вот несколько возможных причин:
1) Я вычислил нграмм по отношению к длине машинно переведенного предложения. Здесь от 1 до 4
2) n_gram_generator
функция, которую я написал сам и не уверен в ее точности
3) Как я использовал неправильную функцию или неверно рассчитал показатель блю
Может кто-нибудь посмотреть мой код и сказать, где я совершил ошибку?