Я разрабатываю алгоритм распознавания номерных знаков.Мой набор данных содержит 150 000 поездов, 30 000 тестов и 680 проверочных изображений.Структура моей модели:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
the_input (InputLayer) (None, 64, 128, 3) 0
__________________________________________________________________________________________________
conv1 (Conv2D) (None, 64, 128, 48) 3648 the_input[0][0]
__________________________________________________________________________________________________
pooling1 (MaxPooling2D) (None, 32, 64, 48) 0 conv1[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 32, 64, 48) 0 pooling1[0][0]
__________________________________________________________________________________________________
conv2 (Conv2D) (None, 32, 64, 64) 76864 dropout_1[0][0]
__________________________________________________________________________________________________
pooling2 (MaxPooling2D) (None, 16, 64, 64) 0 conv2[0][0]
__________________________________________________________________________________________________
dropout_2 (Dropout) (None, 16, 64, 64) 0 pooling2[0][0]
__________________________________________________________________________________________________
conv3 (Conv2D) (None, 16, 64, 128) 204928 dropout_2[0][0]
__________________________________________________________________________________________________
pooling3 (MaxPooling2D) (None, 8, 32, 128) 0 conv3[0][0]
__________________________________________________________________________________________________
dropout_3 (Dropout) (None, 8, 32, 128) 0 pooling3[0][0]
__________________________________________________________________________________________________
flatten_1 (Flatten) (None, 32768) 0 dropout_3[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 160) 5243040 flatten_1[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 64) 10304 dense_1[0][0]
__________________________________________________________________________________________________
out1 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out2 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out3 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out4 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out5 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out6 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out7 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out8 (Dense) (None, 23) 1495 dense_2[0][0]
__________________________________________________________________________________________________
out9 (Dense) (None, 23) 1495 dense_2[0][0]
==================================================================================================
Total params: 5,552,239
Trainable params: 5,552,239
Non-trainable params: 0
________________________________________________________________________________
__________________
Когда я пытаюсь распознать номерной знак по проверочным изображениям, он распознает правильно только 18/680.Как я могу понять, почему значения точности поезда и теста высоки, но эта модель также не может распознавать проверочные изображения и тестовые изображения после обучения?Как я могу улучшить свою модель?
И она строит такие графики:

