Одним из предложений было бы написать простую функцию, которая будет вычислять A%B=C
и сохранять значения A
, B
и C
в массиве, а затем сохранять все результаты в векторе.Затем распечатайте их, чтобы увидеть отношения всех входных и выходных значений.
Есть одна вещь, которую можно сделать, чтобы упростить некоторые из этой работы, а именно узнать некоторые свойства функции мода.Эти два утверждения помогут вам с функцией.
0 mod N = 0
N mod 0 = undefined
Начиная с 0 mod N = 0
мы можем поставить тестовый случай для A
, а если это 0
, мы можем простоиспользуйте это, чтобы заполнить наш массив.Аналогично, если B
= 0
, мы можем заполнить значение C
нашего массива -1
просто для представления неопределенного, потому что вы не можете выполнить A mod 0
, так как компиляция не удастся из-за деления на 0.
Я написал эту функцию, чтобы сделать это;затем я запускаю его через цикл для A
& B
из [0,15]
.
#include <array>
#include <vector>
#include <iostream>
std::array<int, 3> calculateMod(int A, int B) {
std::array<int, 3 > res;
if (A == 0) {
res = std::array<int, 3>{ 0, B, 0 };
}
else if (B == 0) {
res = std::array<int, 3>{ A, 0, -1 };
}
else {
res = std::array<int, 3>{ A, B, A%B };
}
return res;
}
int main() {
std::vector<std::array<int, 3>> results;
int N = 15;
for (int A = 0; A <= N; A++) {
for (int B = 0; B <= N; B++) {
results.push_back(calculateMod(A, B));
}
}
// Now print out the results in a table form:
int i = 0; // Index for formatting output
for (auto& res : results) {
std::cout << res[0] << " % " << res[1] << " = " << res[2] << '\n';
// just for formatting output data to make it easier to read.
i++;
if ( i > N ) {
std::cout << '\n';
i = 0;
}
}
return 0;
}
Вот его вывод:
0 % 0 = 0
0 % 1 = 0
0 % 2 = 0
0 % 3 = 0
0 % 4 = 0
0 % 5 = 0
0 % 6 = 0
0 % 7 = 0
0 % 8 = 0
0 % 9 = 0
0 % 10 = 0
0 % 11 = 0
0 % 12 = 0
0 % 13 = 0
0 % 14 = 0
0 % 15 = 0
1 % 0 = -1
1 % 1 = 0
1 % 2 = 1
1 % 3 = 1
1 % 4 = 1
1 % 5 = 1
1 % 6 = 1
1 % 7 = 1
1 % 8 = 1
1 % 9 = 1
1 % 10 = 1
1 % 11 = 1
1 % 12 = 1
1 % 13 = 1
1 % 14 = 1
1 % 15 = 1
2 % 0 = -1
2 % 1 = 0
2 % 2 = 0
2 % 3 = 2
2 % 4 = 2
2 % 5 = 2
2 % 6 = 2
2 % 7 = 2
2 % 8 = 2
2 % 9 = 2
2 % 10 = 2
2 % 11 = 2
2 % 12 = 2
2 % 13 = 2
2 % 14 = 2
2 % 15 = 2
3 % 0 = -1
3 % 1 = 0
3 % 2 = 1
3 % 3 = 0
3 % 4 = 3
3 % 5 = 3
3 % 6 = 3
3 % 7 = 3
3 % 8 = 3
3 % 9 = 3
3 % 10 = 3
3 % 11 = 3
3 % 12 = 3
3 % 13 = 3
3 % 14 = 3
3 % 15 = 3
4 % 0 = -1
4 % 1 = 0
4 % 2 = 0
4 % 3 = 1
4 % 4 = 0
4 % 5 = 4
4 % 6 = 4
4 % 7 = 4
4 % 8 = 4
4 % 9 = 4
4 % 10 = 4
4 % 11 = 4
4 % 12 = 4
4 % 13 = 4
4 % 14 = 4
4 % 15 = 4
5 % 0 = -1
5 % 1 = 0
5 % 2 = 1
5 % 3 = 2
5 % 4 = 1
5 % 5 = 0
5 % 6 = 5
5 % 7 = 5
5 % 8 = 5
5 % 9 = 5
5 % 10 = 5
5 % 11 = 5
5 % 12 = 5
5 % 13 = 5
5 % 14 = 5
5 % 15 = 5
6 % 0 = -1
6 % 1 = 0
6 % 2 = 0
6 % 3 = 0
6 % 4 = 2
6 % 5 = 1
6 % 6 = 0
6 % 7 = 6
6 % 8 = 6
6 % 9 = 6
6 % 10 = 6
6 % 11 = 6
6 % 12 = 6
6 % 13 = 6
6 % 14 = 6
6 % 15 = 6
7 % 0 = -1
7 % 1 = 0
7 % 2 = 1
7 % 3 = 1
7 % 4 = 3
7 % 5 = 2
7 % 6 = 1
7 % 7 = 0
7 % 8 = 7
7 % 9 = 7
7 % 10 = 7
7 % 11 = 7
7 % 12 = 7
7 % 13 = 7
7 % 14 = 7
7 % 15 = 7
8 % 0 = -1
8 % 1 = 0
8 % 2 = 0
8 % 3 = 2
8 % 4 = 0
8 % 5 = 3
8 % 6 = 2
8 % 7 = 1
8 % 8 = 0
8 % 9 = 8
8 % 10 = 8
8 % 11 = 8
8 % 12 = 8
8 % 13 = 8
8 % 14 = 8
8 % 15 = 8
9 % 0 = -1
9 % 1 = 0
9 % 2 = 1
9 % 3 = 0
9 % 4 = 1
9 % 5 = 4
9 % 6 = 3
9 % 7 = 2
9 % 8 = 1
9 % 9 = 0
9 % 10 = 9
9 % 11 = 9
9 % 12 = 9
9 % 13 = 9
9 % 14 = 9
9 % 15 = 9
10 % 0 = -1
10 % 1 = 0
10 % 2 = 0
10 % 3 = 1
10 % 4 = 2
10 % 5 = 0
10 % 6 = 4
10 % 7 = 3
10 % 8 = 2
10 % 9 = 1
10 % 10 = 0
10 % 11 = 10
10 % 12 = 10
10 % 13 = 10
10 % 14 = 10
10 % 15 = 10
11 % 0 = -1
11 % 1 = 0
11 % 2 = 1
11 % 3 = 2
11 % 4 = 3
11 % 5 = 1
11 % 6 = 5
11 % 7 = 4
11 % 8 = 3
11 % 9 = 2
11 % 10 = 1
11 % 11 = 0
11 % 12 = 11
11 % 13 = 11
11 % 14 = 11
11 % 15 = 11
12 % 0 = -1
12 % 1 = 0
12 % 2 = 0
12 % 3 = 0
12 % 4 = 0
12 % 5 = 2
12 % 6 = 0
12 % 7 = 5
12 % 8 = 4
12 % 9 = 3
12 % 10 = 2
12 % 11 = 1
12 % 12 = 0
12 % 13 = 12
12 % 14 = 12
12 % 15 = 12
13 % 0 = -1
13 % 1 = 0
13 % 2 = 1
13 % 3 = 1
13 % 4 = 1
13 % 5 = 3
13 % 6 = 1
13 % 7 = 6
13 % 8 = 5
13 % 9 = 4
13 % 10 = 3
13 % 11 = 2
13 % 12 = 1
13 % 13 = 0
13 % 14 = 13
13 % 15 = 13
14 % 0 = -1
14 % 1 = 0
14 % 2 = 0
14 % 3 = 2
14 % 4 = 2
14 % 5 = 4
14 % 6 = 2
14 % 7 = 0
14 % 8 = 6
14 % 9 = 5
14 % 10 = 4
14 % 11 = 3
14 % 12 = 2
14 % 13 = 1
14 % 14 = 0
14 % 15 = 14
15 % 0 = -1
15 % 1 = 0
15 % 2 = 1
15 % 3 = 0
15 % 4 = 3
15 % 5 = 0
15 % 6 = 3
15 % 7 = 1
15 % 8 = 7
15 % 9 = 6
15 % 10 = 5
15 % 11 = 4
15 % 12 = 3
15 % 13 = 2
15 % 14 = 1
15 % 15 = 0
Из приведенных выше данных мы можемвидите, что если A == B
, то результат будет 0
.Мы также видим, что если B > A
, то B == A
.Наконец, мы можем видеть, что существуют шаблоны между значениями odd
и even
, равными A
, тогда как B < A
.Если вы можете понять эти паттерны, то большая их часть становится алгебраической манипуляцией.Отсюда следующим шагом будет создание алгоритма, который будет принимать все эти данные и преобразовывать их в двоичную эквивалентность.
Я выбрал значение N
выше как 15
по причине.Это связано с двоичным представлением всех возможных комбинаций двоичных цифр, прежде чем они повторяются снова.Мы знаем, что один байт данных составляет 8 бит;мы знаем, что значения из [0,15] будут вписываться в половину этого;например:
binary byte: hex decimal
0000 0000 0x00 0
...
0000 1111 0xFF 15
После этих 15 различных последовательностей 0 и 1 эти паттерны будут повторяться.Итак, взяв таблицу выше, вы можете преобразовать их в двоичные представления.Теперь, как только вы изучите представления A & B
входов с их C
выходами в двоичном виде и поймете 3 свойства результатов, которые я упомянул выше;Вы должны быть в состоянии разработать алгоритм для быстрого вычисления по модулю любой комбинации A
B
.Один трюк, который нужно помнить, - это то, что нужно учитывать еще 3 вещи.Первое, что сказал пользователь eerokia
:
«В частности, по модулю со степенью 2 можно заменить побитовые операции».
Следующеекроме того, значения являются четными или нечетными, так как четные и нечетные случаи представляют различные варианты A mod B
, когда B < A
.
У меня есть некоторые инструменты информации для начала, но остальныеЯ оставлю до вас, включая задачу преобразования значений A
, B
и C
в их двоичные представления.
Как только вы узнаете двоичные шаблоны входов A
и B
в соответствии с их C
выходами, и вы поймете таблицы истинности логических вентилей - таких операторов, как And - &
, Or - |
, Nand - (!&)
, Nor - (!|)
, Xor - ^
Xnor - (!^)
и Not - !
, а также комплимент (~)
.Вы должны быть в состоянии разработать свой алгоритм с эффективностью.