Я пытаюсь выполнить итерацию питоническим способом (т. Е. Без цикла) через фрейм данных, чтобы создать новые столбцы в зависимости от того, было ли выполнено условие. В частности, учитывая данные о ежедневных доходах, я хотел бы создать новый столбец, в котором будет указано, был ли пройден верхний или нижний предел (лимит является симметричным, но специфичным для акций, поэтому каждая строка может иметь свой лимит, называемый Стандарт в df ниже), примерно так:
import pandas as pd
dict = [
{'ticker':'jpm','date': '2016-11-28','returns': '0.2','returns2': '0.3','std': '0.1'},
{ 'ticker':'ge','date': '2016-11-28','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'fb', 'date': '2016-11-28','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'aapl', 'date': '2016-11-28','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'msft','date': '2016-11-28','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'amzn','date': '2016-11-28','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'jpm','date': '2016-11-29','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'ge', 'date': '2016-11-29','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'fb','date': '2016-11-29','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'aapl','date': '2016-11-29','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'msft','date': '2016-11-29','returns': '0.2','returns2': '0.3','std': '0.1'},
{'ticker':'amzn','date': '2016-11-29','returns': '0.2','returns2': '0.3','std': '0.1'}
]
df = pd.DataFrame(dict)
df['date'] = pd.to_datetime(df1['date'])
df=df.set_index(['date','ticker'], drop=True)
Это должно быть преобразовано так, чтобы я получил новый столбец, который содержит возврат за соответствующий день, если верхний / нижний порог был пересечен, если он не был пересечен, он должен просто содержать возврат за последний день (таким образом, возвращается2) ,
dict2 = [
{'ticker':'jpm','date': '2016-11-28','returns': '0.2','returns2': '-0.3','std': '0.1','sl': '0.2'},
{ 'ticker':'ge','date': '2016-11-28','returns': '-0.2','returns2': '0.3','std': '0.1','sl': '-0.2'},
{'ticker':'fb', 'date': '2016-11-28','returns': '0.05','returns2': '-0.3','std': '0.1','sl': '-0.3'},
{'ticker':'aapl', 'date': '2016-11-28','returns': '-0.2','returns2': '0.3','std': '0.1','sl': '-0.2'},
{'ticker':'msft','date': '2016-11-28','returns': '0.2','returns2': '-0.3','std': '0.1','sl': '0.2'},
{'ticker':'amzn','date': '2016-11-28','returns': '-0.2','returns2': '0.3','std': '0.1','sl': '-0.2'},
{'ticker':'jpm','date': '2016-11-29','returns': '0.2','returns2': '-0.3','std': '0.1','sl': '0.2'},
{'ticker':'ge', 'date': '2016-11-29','returns': '-0.2','returns2': '0.3','std': '0.1','sl': '-0.2'},
{'ticker':'fb','date': '2016-11-29','returns': '0.2','returns2': '-0.3','std': '0.1','sl': '0.2'},
{'ticker':'aapl','date': '2016-11-29','returns': '-0.2','returns2': '0.3','std': '0.1','sl': '-0.2'},
{'ticker':'msft','date': '2016-11-29','returns': '0.2','returns2': '-0.3','std': '0.1','sl': '0.2'},
{'ticker':'amzn','date': '2016-11-29','returns': '-0.2','returns2': '0.3','std': '0.1','sl': '-0.2'}
]
df2 = pd.DataFrame(dict2)
df2['date'] = pd.to_datetime(df2['date'])
df2=df2.set_index(['date','ticker'], drop=False)
Я пытаюсь сохранить эту гибкость (чтобы она работала более чем на 2 столбца с возвратами) и эффективность (чтобы она работала с очень большими значениями dfs.
Кто-нибудь может предложить подход?