Как извлечь правильные выводы после обработки в TensorRT? - PullRequest
0 голосов
/ 30 мая 2019

Я конвертирую модель openpose из этой библиотеки tf-openpose в тензор, чтобы ускорить обработку. Преобразование является успешным, как показано в файле UFF. Ввод image и вывод Openpose/concat_stage7, как показано ниже. Затем конвертировать в двигатель.

NOTE: UFF has been tested with TensorFlow 1.12.0. Other versions are not guaranteed to work
UFF Version 0.6.3
=== Automatically deduced input nodes ===
[name: "image"
op: "Placeholder"
attr {
  key: "dtype"
  value {
    type: DT_FLOAT
  }
}
attr {
  key: "shape"
  value {
    shape {
      dim {
        size: -1
      }
      dim {
        size: -1
      }
      dim {
        size: -1
      }
      dim {
        size: 3
      }
    }
  }
}
]
=========================================

=== Automatically deduced output nodes ===
[name: "Openpose/concat_stage7"
op: "ConcatV2"
input: "Mconv7_stage6_L2/BiasAdd"
input: "Mconv7_stage6_L1/BiasAdd"
input: "Openpose/concat_stage7/axis"
attr {
  key: "N"
  value {
    i: 2
  }
}
attr {
  key: "T"
  value {
    type: DT_FLOAT
  }
}
attr {
  key: "Tidx"
  value {
    type: DT_INT32
  }
}
]
==========================================

Using output node Openpose/concat_stage7
Converting to UFF graph
No. nodes: 463
UFF Output written to cmu/cmu_openpose.uff

Двигатель десериализован и делает вывод как

def infer(engine, x, batch_size, context):  
    inputs = []
    outputs = []
    bindings = []
    stream = cuda.Stream()
    for binding in engine:
        size = trt.volume(engine.get_binding_shape(binding)) * batch_size
        dtype = trt.nptype(engine.get_binding_dtype(binding))
        # Allocate host and device buffers
        host_mem = cuda.pagelocked_empty(size, dtype)
        device_mem = cuda.mem_alloc(host_mem.nbytes)
        # Append the device buffer to device bindings.
        bindings.append(int(device_mem))
        # Append to the appropriate list.
        if engine.binding_is_input(binding):
            inputs.append(HostDeviceMem(host_mem, device_mem))
        else:
            outputs.append(HostDeviceMem(host_mem, device_mem))
    img = np.array(x).ravel()
    np.copyto(inputs[0].host, 1.0 - img / 255.0)  
    [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)    
    # Transfer predictions back from the GPU.
    [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    # Synchronize the stream
    stream.synchronize()
    # Return only the host outputs.

Мне нужно получить heatMat and pafMat from output в качестве исходной обработки tf_pose. Обработка tf_pose имеет

self.tensor_image = self.graph.get_tensor_by_name('TfPoseEstimator/image:0')
self.tensor_output = self.graph.get_tensor_by_name('TfPoseEstimator/Openpose/concat_stage7:0')
self.tensor_heatMat = self.tensor_output[:, :, :, :19]
self.tensor_pafMat = self.tensor_output[:, :, :, 19:]

Как я могу получить heatMat и pafMat по результатам обработки тензорта?

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...