'' 'Привет!Я никогда еще не проводил поиск по сетке для моделей NN, и это оказалось не такой простой задачей, как для линейной регрессии.Я полностью сбит с толку.Подскажите пожалуйста, что я делаю не так, и как правильно написать?Заранее спасибо! '' '
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
activation = ["elu", "exponential", "hard_sigmoid", "linear", "relu", "selu", "sigmoid", "softmax", "softplus", "softsign",
"tanh"]
optimizer = ["Adadelta", "Adagrad", "Adam", "Adamax", "Ftrl", "Nadam", "ORMSprop", "SGD"]
units = np.geomspace(1, 90, 5)
# prepare grid search (search space)
search_space = [{'activation': activation,
'oprimizers': optimizer,
'units': units}] # grid 1 for linear regression
pipeline= Pipeline( ("input layer" ,Input(shape=(7,1), dtype='float32')),
("GRU", GRU(units=num_neurons, input_shape=(7,1), return_sequences=False, activation=activation)(input_layer)),
("dropout_layer" ,Dropout(0.2)(gru_layer) ),
("output_layer", Dense(1, activation=activation)(dropout_layer)),
("ts_model", Model(inputs=input_layer, outputs=output_layer)),
("comp", ts_model.compile(loss='mae', optimizer=optimizer, metrics=['accuracy'])))
# set up grid search
model_grid_cv = GridSearchCV(estimator=pipeline,
param_grid=search_space,
scoring='r2',
cv=time_split)