Может ли кто-нибудь ОБЪЯСНИТЬ мне, почему я получаю эту ошибку, когда пытаюсь приспособить своего агента к окружающей среде?Я видел, что это должно быть повторяющейся ошибкой, и вот объяснение этого.Я использую среду под названием RecoGYM
(версия 1), и это мой код:
class RecoProcessor(Processor):
def process_observation(self, observation):
look_back = 10
if observation is None:
X=np.zeros(look_back)
else:
if len(observation)>look_back:
observation = observation[-look_back]
observation = np.array(observation)
if len(observation.shape) == 2:
X = observation[:,1]
else:
X = np.array([observation[1]])
if len(X)<look_back:
X = np.append(X,np.zeros(look_back-len(X)))
return X
def process_state_batch(self, batch):
return batch[0]
def process_reward(self, reward):
return reward
def process_demo_data(self, demo_data):
for step in demo_data:
step[0] = self.process_observation(step[0])
step[2] = self.process_reward(step[2])
return demo_data
lr = 1e-3
window_length = 1
emb_size = 100
look_back = 10
# "Expert" (regular dqn) model architecture
inp = Input(shape=(10,))
emb = Embedding(input_dim=env.action_space.n+1, output_dim = emb_size)(inp)
rnn = Bidirectional(LSTM(5))(emb)
out = Dense(env.action_space.n, activation='softmax')(rnn)
expert_model = Model(inputs = inp, outputs = out)
# try using different optimizers and different optimizer configs
expert_model.compile(loss='mse',
optimizer='adam',
metrics=['acc'])
# memory
memory = PrioritizedMemory(limit=5000, window_length=window_length)
# policy
policy = BoltzmannQPolicy()
# agent
dqn = DQNAgent(model=expert_model, nb_actions=env.action_space.n, policy=policy, memory=memory,
enable_double_dqn=False, enable_dueling_network=False, gamma=.6,
target_model_update=1e-2, processor = RecoProcessor())
dqn.compile(Adam(lr), metrics=['mae'])
train = dqn.fit(env, nb_steps=50000, visualize=False, verbose=1, nb_max_episode_steps = None)
И мой вывод выглядит так:
Training for 50000 steps ...
Interval 1 (0 steps performed)
966/10000 [=>............................] - ETA: 25s - reward: 0.0155
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-48-00ed6e6b7fff> in <module>
54 dqn.compile(Adam(lr), metrics=['mae'])
55
---> 56 train = dqn.fit(env, nb_steps=50000, visualize=False, verbose=1, nb_max_episode_steps = None)
57 np.savetxt(fichero_train_history,
58 np.array(train.history["episode_reward"]), delimiter=",")
c:\users\angelo\src\keras-rl\rl\core.py in fit(self, env, nb_steps, action_repetition, callbacks, verbose, visualize, nb_max_start_steps, start_step_policy, log_interval, nb_max_episode_steps)
192 # Force a terminal state.
193 done = True
--> 194 metrics = self.backward(reward, terminal=done)
195 episode_reward += reward
196
c:\users\angelo\src\keras-rl\rl\agents\dqn.py in backward(self, reward, terminal)
330 # outlined in Mnih (2015). In short: it makes the algorithm more stable.
331 target_q_values = self.target_model.predict_on_batch(state1_batch)
--> 332 assert target_q_values.shape == (self.batch_size, self.nb_actions)
333 q_batch = np.max(target_q_values, axis=1).flatten()
334 assert q_batch.shape == (self.batch_size,)
AssertionError:
Большая часть класса RecoProcessor
сделан методом проб и ошибок, и я думаю, что ключ находится в этом классе.У меня также есть проблемы с переменными look_back
и window_length
, потому что я не очень хорошо понимаю разницу между ними.
(ОБНОВЛЕНИЕ 1) Я только что проверил, что переменные assert имеют этиформы:
Target_Q_values: (1, 42)
(self.batch_size, self.nb_actions): (32, 42)